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Abstract—The calculus of deterministic constraints on
service and traffic streams offers a rich language to
specify service guarantees. In particular, the service curve
earliest deadline first (SCED) algorithm has an associated
feasibility test given by linear constraints. Users sending
streams of data through the server may have differing needs
for delay and throughput. We suggest a way based on utility
function maximization, subject to the linear constraints of
the SCED algorithm, for allocation of service. In addition,
a generalization of the SCED algorithm is given which does
not require that the deadline sequences within streams be
monotone nondecreasing.

I. INTRODUCTION

There are many philosophical issues related to design
of mechanisms for allocating service over time. One is
whether quality of service is based on payments, virtual
or real, by users. In this paper, we consider the case that
such payments are made, and focus on certain allocation
mechanisms involving pricing. A second issue is whether
state information is kept, either at the boundary of a
network or at each node in a network, for each user.
For example, the differentiated services model assumes
no user state information is kept at the nodes within
the network. A user can label packets with different
quality of service requirements, and there could be prices
associated with the different service classes, imposed at
the boundary of the network. In contrast, the integrated
services model involves each node of the network keep-
ing state information for each user (i.e. each flow). In this
paper we focus on only a single server, which does keep
state information for each user. A possible application
of the pricing mechanisms we discuss, however, would
be to use them to set performance guarantees at several
critical points along the path of a given network flow.

To make this discussion more concrete, consider the
use of generalized processor sharing (GPS) [1, 2] by a
rate C server. Each flow i receives, at a minimum, nearly
constant rate service at rate Ci = φi/

∑
j φj , where φj

is a weight assigned to each flow. A guarantees for flow
i could be absolute, such as a positive lower bound on
Ci, or relative, such as a positive lower bound on φi.

Pricing could be used to mediate the choice between
absolute and relative guarantees, with higher prices for
absolute and longer term agreements, being higher.

Even within the space of pricing/allocation mecha-
nisms for a single server, there are many design issues. A
key choice is the time-horizon over which guarantees are
extended. Another philosophical issue related to pricing
is to know what the objective of the pricing is. One
possible goal would be social efficiency: to maximize the
sum, over all users, of the values that each user obtains
from the resource (independently of the payments made),
whereas another possible goal would be to maximize
revenue. These two goals are related, to the extent
that higher prices can be charged for a resource that
provides more value. Yet another design issue is whether
the users are assumed to anticipate the effects of their
own individual actions on the prices offered. We shall
focus on the case that users are price-takers, meaning
they don’t anticipate the effects of their own individual
actions on the prices offered, and social welfare is to be
maximized.

A. Background on Network Calculus

This section briefly reviews some of the theory of
deterministically constrained traffic, initiated by R. L.
Cruz [3, 4], Parekh and Gallager [1, 2], and others.
Specifically, upper constraints, regulators, and service
curves are discussed. More detail and references can be
found in the books of C.-S. Chang [5] and Leboudec and
Thiran [6].

The case of equal length packets transmitted in dis-
crete time will be considered. A packet stream can be
described by a cumulative arrival sequence A, which is
a nondecreasing, integer-valued function on the nonneg-
ative integers Z+, such that A(0) = 0. For each integer
t ≥ 1, A(t) denotes the number of arrivals of the stream
in slots 1, 2, . . . , t. Since we have no interest here in
the actual contents of the packets, the cumulative arrival
process A is itself called a packet stream, or simply a
stream.



Let f be a nondecreasing function from Z+ to R+.
A stream A is said to be f -upper constrained if A(t)−
A(u) ≤ f(t−u) for all u, t with 0 ≤ u ≤ t. Equivalently,
A is f -upper constrained if A ≤ A ? f , where for two
functions f and g defined on Z+, f ? g denotes the
function on Z+ defined by

(f ? g)(t) = min
0≤u≤t

g(u) + f(t− u). (1)

Some functions f can be reduced, without changing
the condition that a packet steam is f -upper constrained.
The subadditive integer closure, f∗, is given by f∗(0) =
0, and for u ≥ 1, f∗(u) = min{bf(u1)c + · · · +
bf(un)c}, where the minimum is over ways to write u
as a sum of positive integers: u1+ · · ·+un = u, and bxc
denotes the greatest integer less than or equal to x. The
function f∗ is subadditive: f∗(u + t) ≤ f∗(u) + f∗(t)
for u, t ≥ 0, and f∗ is maximal among all integer-valued
subadditive functions with initial value zero which are
pointwise dominated by f. Then for any stream A, A
is f -upper constrained if and only if A is f∗-upper
constrained, or equivalently, if and only if A = A?f∗. A
regulator for an upper-constraint f is a device such that
for any input stream A the corresponding output stream
B is f -upper constrained. A regulator is said to be a
maximal regulator for f if the following is true: For any
input stream A, if B is the output of the regulator for
input A and if B̃ is a stream such that B̃ ≤ A (flow
condition) and B̃ is f -upper constrained, then B̃ ≤ B.

Proposition 1.1: (See [5, 6].) A maximal regulator for
f is determined by the relation B = A ? f∗.

A stream A is said to be (σ, ρ)-upper constrained if it
is f -upper constrained for the function f(t) = σ+ρt. An
important property of the (σ, ρ)-upper constraint is that
the maximal regulator for the (σ, ρ)-upper constraint can
be implemented in a simple way using a single counter.

Let C be a positive integer. A queue with a constant-
rate, work-conserving server C and input process A has
the output process B = A ? f, where f(t) = Ct. The
queuelength process is (q(t) : t ≥ 0), where q(t) is the
number of packets carried over from slot t to slot t+ 1.
It is given by q = A − B. The time a packet spends
in the queue does not include any service time of the
packet (even if there is a nonzero service time), so that
the queuing delay, or time-in-queue, for a packet, can be
zero.

A service curve is a nondecreasing function from Z+

to Z+ with value zero at zero. Given a service curve f ,
a server is an f -server if for any input A, the output
B satisfies B ≥ A ? f . An f server is called exact if
for any input A, the output B satisfies B = A ? f. An
exact f -server lets out the minimum number of packets

necessary to meet the f -server constraint.
Example 1.1: (a) (Bounded delay server) Given an

integer d ≥ 0, let Od denote the function

Od(t) =
{

0 for t ≤ d
+∞ for t > d

Then a FIFO device is an Od-server if and only if the
delay of every packet is less than or equal to d, no matter
what the input process.
(b) (Delay-rate function) Given δ, β ≥ 0, let b(t) = β(t−
δ)+. A b-server serves at least as many packets by time
t as a constant rate β server would serve by time t− δ,
for all t ≥ δ.
(c) A maximal regulator for a nondecreasing function
f : Z→ R+ is an exact f∗-server.

II. UPPER CONCENTRATION AND THE SCED
ALGORITHM

This section generalizes the service curve earliest
deadline first algorithm (SCED) of [7–9] to accommo-
date the case that the sequence of deadlines of packets
within a data stream need not be monotone nondecreas-
ing. Since deadlines can be put on individual packets by
the source in real-time, this generalization allows more
flexibility on the part of a user in determining a delay-
throughput profile. Since there may be unknown transit
times between a user and a server, the deadlines could
instead be given as laxities, to be measured from the
time of arrival of a packet at the server. Here we use
deadlines and we do not include propagation delays.

Consider a packet stream described by A. Suppose
the packets within the stream are P1, P2, . . . , where the
numbering is such that Pk+1 arrives after or at the same
time as Pk, for all k ≥ 1. The arrival time of Pk is then
A−1(k) = min{t : A(t) ≥ k}. Let D = (D(k) : k ≥ 1)
be a sequence of deadlines for the packets. We require
that D ≥ A−1, but we do not require that the sequence
D be nondecreasing. The pair (A,D) is called a stream
with deadlines. Suppose h is a nondecreasing function
h : Z→ R+. We introduce the following definition.

Definition 2.1: A stream with deadlines (A,D) is
h-upper concentrated if for any interval of u ≥ 1
consecutive time slots, [t − u + 1 : t], the number of
packets with both arrival time and deadline within the
interval is less than or equal to h(u).

Given an arrival stream A, a monotone nondecreasing
sequence of deadlines D can readily be assigned so
that (A,D) satisfies a prescribed upper concentration
constraint (see the next two lemmas). Nomonotonic
sequences of deadlines can be assigned, subject to up-
per concentration constraints, by running multiple sub-
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streams, with monotone deadline sequences within each
substream.

Lemma 2.2: (Service guarantees for a stream with
nondecreasing deadlines) Suppose (A,D) is a stream
with deadlines, such that the sequence of deadlines D
is nondecreasing, and suppose f is a nondecreasing
function on Z+ such that f(0) = 0. Let B denote the
arrival stream corresponding to D : B(t) = max{k ≥
1 : D(k) ≤ t} and D = B−1. Then
(a) A server that serves packets exactly at the deadlines
in D, guarantees bfc-service if and only if B ≥ A?bfc.
(b) (A,D) is bfc-upper concentrated if and only if
B ≤ A ? bfc.
(c) If B = A ? bfc (i.e. D = (A ? f)−1) D is the
latest nondecreaing sequence of deadlines guaranteeing
bfc-service, and is the earliest nondecreasing sequence
of deadlines such that (A,D) is bfc-upper concentrated.

Proof: The definition of bfc-service implies (a). For
and u, t with 1 ≤ u ≤ t, the number of packets that
have arrival times and deadlines within [t − u + 1, t] is
B(t) − A(t − u). So (A,D) is bfc-upper concentrated
if and only if B(t)−A(t− u) ≤ bf(u)c whenever 1 ≤
u ≤ t, or equivalently, if and only if B ≤ A ? bfc. Part
(c) is implied by (a) and (b).

Lemma 2.3: (Concentration upper constraint for an
upper-constrained stream with nondecreasing deadlines)
Suppose f, g : Z → R+ are nondecreasing with
f(0) = 0. Suppose (A,D) is a stream with deadlines
such that A is g-upper constrained and the deadlines are
given by D = (A? bfc)−1. (Note that the deadlines are
nondecreasing.) Then (A,D) is h-upper concentrated,
where h = g ? bfc.

Proposition 2.4: (SCED guarantee, deadline sequence
not necessarily monotone) Consider an EDF server
with integer fixed rate C that serves a set of streams
with deadlines, ((As, Ds) : s ∈ S), and suppose
that (As, Ds) is hs-upper concentrated for s ∈ S. If∑
s∈S hs(u) ≤ Cu for all u ≥ 0, then each packet is

served no later than its deadline.
Proof: A well-known property of EDF is that if

all deadlines can be met by some service order, then all
deadlines can be met by the EDF service order. It is thus
sufficient to show that, for any K ≥ 1, there is a schedule
such that the first K packets can be scheduled by their
deadlines. Consider a bipartite graph, with vertices on
the left given by packets P1, . . . , PK , and vertices on the
right given by Ov,l for v ≥ 1 and 1 ≤ l ≤ C. Vertex Ov,l
denotes an opportunity for service at time v. Suppose
there is an edge between Pk and a vertex Ov,l if and only
if v is in the closed interval bounded by the arrival time
of Pk and the deadline of Pk. Then the first K packets

can be scheduled by their deadlines if and only if there
is a matching in the graph that covers all K vertices on
the left. Hall’s theorem for matchings in bipartite graphs
states that such a matching exists if (and only if) for
any set of vertices F on the right side, the number of
vertices on the left that must be matched to one of those
vertices is less than or equal to |F |. The assumptions of
the proposition imply Hall’s condition is true for F of
the form {Ov.l : (v, l) ∈ [t− u+ 1 : t]× [1 : C]}, from
which Hall’s condition follows for general F . Thus, there
exists some schedule under which the first K packets
meet their deadline.

In view of Lemma 2.3, Proposition 2.4 reduces to
the scheduling result for SCED for which service within
each stream is FIFO:

Corollary 2.5: [7–9] Consider an EDF server with
integer fixed rate C that serves a set of streams with
deadlines, ((As, Ds) : s ∈ S). Suppose (As, Ds) for
s ∈ S is a packet stream such that As is gs-upper
constrained and Ds = (As ? dfse)−1. Then if∑

s∈S
(gs ? fs)(t) ≤ Ct for t ∈ Z+, (2)

no packet is served after its deadline.
Example 2.1: For example, suppose S = {1, 2, 3},

gs(t) = (σs + ρst)I{t≥0} and fs(t) = Ods
(t) for 1 ≤

s ≤ 3, where 0 < d1 < d2 < d3. Then gs ? fs =
gs(t− ds), and the sufficient condition (2) is illustrated
in Figure 1.

Fig. 1. Constraint set with three users

III. PRICING SERVICE LEVEL AGREEMENTS

Let S denote a set of users, such that each user s sends
a stream As through the server. We turn to the problem
of developing a mechanism for allocating functions
hs = gs ? fs to the users based on prices, following
the methodology of valuation functions. In particular,
we would like to make available a decomposition of
the system allocation problem into problems for the
users, based on prices, and a network problem, based
on bids from the users, along the lines of Kelly et al.
[10, 11]. We use a vector (gs, fs, ws) to represent a
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service level agreement between user s and the network.
The significance is that the user s agrees that its input
stream, As, will be gs-upper constrained, and user s
agrees to pay at rate ws ≥ 0. In return, the server agrees
to be an bfsc-server for user s. Our approach is based
on the following considerations.

The sufficient condition (2) is potentially infinite di-
mensional, because there is a constraint for each t ≥ 0.
But, Example 2.1 illustrates that if the functions fs
and gs are piecewise linear, then the constraints can be
reduced to a finite number of conditions. Hence, we will
fix a set of delays, 0 < D1 < D2 < · · · < DJ , and
require that the sufficient conditions (2) reduce to J + 1
linear conditions, one for each Dj , 1 ≤ j ≤ J , and one
for the slope beyond DJ . For example, J could be much
smaller than |S|. Conceptually, we might allow the users
to bid for J+1 dimensional allocation vectors, with each
coordinate entering into one of the J+1 inequalities. But
in order to reduce the complexity of the bidding process,
we assume that each user s specifies a small number of
shape vectors, and then, is allocated an SLA based on a
linear combination of the shape vectors, with coefficients
in the linear combination determined through the bidding
process.

For example, if there were three users as in Example
2, we could take {D1, D2, D3} = {d1, d2, d3}, and
there would be four inequalities to be satisfied. We
could suppose that each user s, requests an SLA of the
form (σs + ρst, Ods , ws), where a specific value of ds
is specified (so the user is not elastic with respect to
delay) but the values of σs and ρs are to be determined
by a bidding process. If, furthermore, the user were to
initially specify a fixed ratio for σs/ρs, then gs ? fs
would be determined up to a positive constant, in which
case we would use a valuation function, Us, of the one-
dimensional variable ρs. If the ratios σs/ρs aren’t fixed
in advance of the bidding process, then we would use a
valuation function depending on two variables, namely,
having the form Us(σs, ρs).

The framework of [10, 11] can be extended to mul-
tidimensional allocations based on utility functions, as
shown by Gibbens and Kelly [12]. As pointed out
in [12], pricing for differentiated services is akin to
source routing, in which a packet source essentially
specifies different routes for packets by labeling them
with different quality-of-service marks. The routes in
[12] correspond to shape vectors here, and the links in
[12] correspond to constraints here. For each s ∈ S, the
service to be allocated to user s is to be represented by a
vector xs = (yr : r ∈ s). Here, r indexes the coordinates
of the allocation vector xs. Let R denote the union of

the disjoint sets {r : r ∈ s}, indexed by s ∈ S.
For each r ∈ s and s ∈ S, we assume there is a

shape vector (Aj,r : 1 ≤ j ≤ J + 1), which specifies
the contribution of yr to each of the J + 1 constraints.
Each user s therefore has a shape matrix (Aj,r : 1 ≤
j ≤ J + 1, r ∈ s). Let Cj = CDj for 1 ≤ j ≤ J and
CJ+1 = C. The constraints are∑

r

Aj,ryr ≤ Cj 1 ≤ j ≤ J + 1

The value of service vector xs to user s is expressed as
Us(xs). The dimension of the demand of user s is the
length of xs, or |{r : r ∈ s}|.

Example 3.1: A user s seeking an SLA of the form
(gs, fs, ws) with gs(t) = σ + ρt and fs(t) = ODj0

(t)
has xs = (y[s,σ], y[s,ρ]) = (σ, ρ) and 2 × (J + 1) shape
matrix given by

Aj,[s,σ] = I{jo≤j≤J}

Aj,[s,ρ] = (Dj −Djo)I{j0≤j≤J} + I{j=J+1}.

Example 3.2: A user s seeking fs(t) = β(t −
Dj0)+ service with β to be determined has xs = y[s,1] =
β and 1× (J + 1) shape matrix given by

Aj,[s,1] = (Dj −Djo)I{j0≤j≤J} + I{j=J+1}.

This is the same as the second row for Example 3.1.
Example 3.3: A user s seeking to obtain an SLA

of the form (hs, ws) for a stream of packets with
deadlines subject to an h-upper concentration constraint
for h of the form hs(t) = β1(min{t,Dj1} − Dj0)+ +
β2I{t≥Dj1} has xs = (x[s,1], x[s,2]) = (β1, β2) and
2× (J + 1) shape matrix given by

Aj,[s,1] = (min{Dj , Dj1} −Djo)I{j0≤j≤J}
Aj,[s,2] = (Dj −Dj1)I{j1≤j≤J} + I{j=J+1}

Example 3.4: One possibility for a concave val-
uation function of the form U(σ, ρ) for an σ, ρ-upper
constraint is

U(σ, ρ) =


ρ− ρσ+1

1− ρσ+1
, if ρ 6= 1,

σ

1 + σ
, if ρ = 1.

It can verified that the valuation function U(σ, ρ) is
a concave function of (σ, ρ). The details are compli-
cated. (Mathematica was used to algebraically check
that the Hessian matrix is everywhere negative definite.)
A heuristic motivation of this choice is that it is the
throughput for a dropping bucket regulator with Poisson
packet arrivals of rate one, and Poisson token arrivals of
rate ρ and maximum token backlog σ.
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Define the vector CCC = (Cj : 1 ≤ j ≤ J + 1) by
Cj = CDj for 1 ≤ j ≤ J and CJ+1 = C.

SY STEM(UUU,A,CCC) :

max
∑
s∈S

Us(xs)

over yr ≥ 0, r ∈ R, subject to Ayyy ≤ CCC
where xs = (yr : r ∈ s), s ∈ S.

The system problem is concave, and the Kuhn-Tucker
conditions give rise to the following proposition, stated
without proof.

Proposition 3.1: There is a solution to the system
problem. A feasible allocation xxx is a solution if and only
if there is a choice of µµµ = (µj : 1 ≤ j ≤ J + 1) (i.e.
Lagrange multipliers for the J + 1 constraints) so that
for all s

Urs (xs) ≤ λr with equality if yr > 0 for r ∈ R
λλλ = Aµµµ

µj ≥ 0, with equality if
∑
r

Aj,ryr = Cj ,∀j

A. System problem decomposition for price-taking users

The form of the system problem falls within the
multidimensional value optimization framework of
Gibbens and Kelly [12], except here the entries in
A are not necessarily zero-one valued. The system
problem can be decomposed as follows. Each user s
sends a signal ws to the server. After the server receives
the signals from the users, it solves the following
optimization problem:

NETWORK(www,A,CCC) :

max
∑
r∈R

wr log yr

over yr ≥ 0, r ∈ R, subject to Ayyy ≤ CCC
where xs = (yr : r ∈ s), s ∈ S.

The users take λλλ as fixed prices set by the server and
update their signals in the direction of maximizing their
payoffs:

USERs (Us, (λr : r ∈ s)) :

maxUs(xs)−
∑
r∈s

wr

over wr ≥ 0, r ∈ R
subject to wr = λryr, r ∈ s
where xs = (yr : r ∈ s).

The users and the server do the following iteration:
The server solves the NETWORK problem based on
users’ updated signals and the users readjust their signals
by new price feedback from the server. As in Kelly,
Maulloo, Tan, [11], both primal and dual methods for
solving relaxed versions of the network problem can
be fashioned, and a user adaptation algorithm can be
used for the user problem. Simultaneous solution to both
yields a solution to the system problem.
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