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Scheduling Nonuniform Traffic in a Packet
Switching System with Large Propagation Delay

Bruce Hajek, Fellow, IEEE, and Timothy Weller

Abstract— Transmission algorithms are introduced for use in
a single-hop packet switching system with nonuniform traffic
and with propagation delay that is large relative to the packet
transmission time. The traffic model allows arbitrary traffic
streams subject only to a constraint on the number of data
packets which can arrive at any individual source in the system
or for any individual destination in the system over time periods
of specified length. The algorithms are based primarily on send-
ing transmission schedules to the receivers immediately before
transmitting each data packet multiple times so that the receiver
can maximize the number of packets it captures. An algorithm
based on matchings in a random graph is shown to provide mean
total delay divided by mean propagation delay arbitrarily close
to one, as the propagation delay tends to infinity.

Index Terms—Switching, scheduling, large propagation delay,
nonuniform traffic.

1. INTRODUCTION

ECENTLY, there has been demand for the multiplexing
Rof many classes of data onto a single network. The result-
ing integrated data network must provide the same or better
quality of service than is provided by a single-class network.
The recent and widely accepted Asynchronous Transfer Mode
(ATM) standard [1] for integrated networks is illustrative
of the solutions proposed to meet the demands. Four key
features of ATM deserve a close look because they differ
from those features of most classical protocols. First, data
are transmitted in small packets, primarily in a connection-
oriented fashion. Second, because of high data rates and smail
packet sizes, the relative propagation delay expressed in terms
of number of packets may be quite large, especially in some
wide-area networks. Third, because diverse classes of data can
be transported via ATM, nonuniform (“bursty”) arrival traffic
often arises. Finally, guaranteed quality of service is required
for some classes of data using ATM, such as real-time video
or voice. These applications may require a guarantee on the
minimum throughput or a bound on the maximum delay.

In this paper, a model of a packet-switching system which
contains these four key features is used. Propagation delay
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Fig. 1. The basic model.

is a key parameter in the model. Most related work (see [2]
for an overview) focuses on uniform traffic patterns. The goal
of this paper is to study methods for transmitting nonuniform
traffic in the type of communication networks described above.
A new model of nonuniform traffic is introduced which
allows a diverse class of arrival sample paths and facilitates
determination of quality of service.

The basic model of a packet-switching system considered in
this paper has many stations with a fully connected topology
(see Fig. 1). This multiple-access communication model was
used previously to analyze optical networks [3], {4], but its
application can be broader. Each station has a data transmitter
and receiver. The fully connected topology is realized by
dedicating a data channel to each source and allowing a
receiver to receive from any data channel. Time is slotted.
Data are transmitted synchronously in fixed-size packets. Each
source can transmit at most one packet during a given slot, and
each destination can receive at most one packet during a given
slot. A transmission algorithm produces a slot assignment,
which maps each transmission slot on each data channel to
a particular virtual queue (source—destination pair).

Each receiver has capture capability, which is the ability of
a receiver to receive one packet when multiple sources send
packets to the receiver at the same time. Capture allows higher
throughput than is possible in multiple-access systems without
this feature. All transmissions are assumed to be completely
reliable.
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The propagation delay d.p is the same between any source
and destination. Each source has a buffer to hold the queue of
packets which have not yet been sent. More than one packet
can arrive at a source queue during a single slot. Each source
queue can be viewed as many separate virfual queues by
partitioning traffic by destination. The relationships among the
arrival traffic model, the propagation delay, and other system
parameters are considered in the analysis.

There exists a low-bandwidth broadcast control channel
available to all stations for the exchange of source queue state
information and future transmission information. This channel
might, for example, share the physical medium with the data
channels. The control channel bandwidth should be a small
fraction of the total bandwidth. Each station has a separate
transmitter and receiver for the control channel. Unless other-
wise noted, the control channel is shared using time-division
multiplexing with each station allowed to transmit during
one control channel minislot in each data slot. The broadcast
control channel is assumed to have the same propagation delay
as the data channel. For all but the most simple algorithm
in this paper (TDMA), the broadcast channel is used in a
tell-and-go fashion, defined as follows. The transmitter sends
information on the broadcast control channel about when
packets are to be transmitted, and shortly thereafter sends the
packets. At the time of transmission, the receivers need not
know about the transmission, or even about the existence of
the packets. A propagation time later, the receivers first receive
information about the transmissions, and then the transmitted
data packets arrive. The information about the packets can be
used by the receiver to decide which packet to capture in each
slot.

An example of a communication system which fits the basic
model is a broadcast network using a passive optical star as in
the RAINBOW project at IBM [4]. The data transmission oc-
curs using wavelength-division multiplexing. Each transmitter
sends data on a fixed unique wavelength and each receiver has
a tunable filter to receive from any one particular transmitter
per slot. The control channel is a single unique wavelength,
shared among the stations using time-division multiplexing.
Each station needs a fixed transmitter and a fixed receiver on
this wavelength. RAINBOW is designed primarily for use in
metropolitan area networks.

Let ' = {1,---n} index the set of stations. The virtual
queues of source i are labeled (%, ) for j € N. Slot k refers
to the time period [k,k + 1). The sequence of consecutive
integers (slots) k,---,{ — 1 is written [k:{). Let Z be the set
of integers and Z* be the set of nonnegative integers.

During a given slot k, new packets arrive at a source and
are placed in the buffer at the beginning of the slot. Next, the
source makes a decision about which (if any) packet to send.

Any packet in the buffer is eligible for transmission. Finally,
" the selected packet is transmitted. Those transmitted packets
which are captured dp,.o, slots later are said to depart in slot
k. The transmission of packets which are guaranteed to be
captured is called scheduling. A given receiver can capture at
most one packet per slot.

The access delay of a packet is defined to be the number
of whole slots that the packet is present in the system before

its departure. Note that the access delay does not include the
propagation delay d,, suffered by all packets in transit to
a receiver after they depart. Because a packet can arrive and
depart in the same slot, the minimum possible access delay is
zero. Given an arrival sequence and a packet p in the sequence,
let d,, denote the access delay of p, and let dy. = maxy, (dp)
denote the maximum access delay for the sequence.

The backlog matrix for slot k is the n x n matrix with 4jth
entry given by the number of packets in virtual queue (3, 5)
after the arrivals but before the departures in slot k. The term
line is used to refer to either a row or column of a matrix. A
line sum is the sum of all the elements in a line of a matrix.
Line backlogs refer to the line sums of the backlog matrices,
which are simply the numbers.of queued packets at particular
sources, and numbers of queued packets bound for particular
destinations.

The delay analysis in this paper is for (@, S) traffic arrival
sequences, defined as follows. An (o, S) traffic sequence is
simply one such that, over any time period of length S no more
than oS packets arrive at a given source and no more than
a8 packets bound for a given destination arrive at all sources.
A random sequence is said to be (o, S) if its sample paths
meet the (o, S) constraint. Arrival sequences with sources
exhibiting on/off bursts or “hot spots”—commonly studied as
representative nonuniform traffic—are easily accommodated
with the (o, S) model. Periodic, multiplexed traffic is also
easily accommodated by the (c,.S) model. For convenience,
a§ is taken to be an integer. An example of a similar single
stream model is found in [5].

In this paper, transmission algorithms are presented for
use with (o, S) traffic in networks with large propagation
delay. Upper bounds on the maximum access delay and
maximum line backlog are desired. In a companion paper [6],
algorithms are given for scheduling (c, S) traffic in networks
with small propagation delay. Those algorithms can be adapted
to networks with large propagation delay by making each
packet wait a period dprop While its arrival is announced
to all the stations. The main idea in this paper is to avoid
such an initial waiting period. This implies that packets are
transmitted before the transmitters have a chance to coordinate
their transmissions, with the goal of achieving access delay
that is small compared to dpop.

In Section II algorithms which transmit each packet only
once are considered. It is shown that variations of TDMA
permit close to the maximum values of « in this case, but the
allowable values of ¢ are rather small for a large number of
stations. A considerable improvement is obtained if a single
packet can be transmitted more than once, as shown in Section
IIL. All the algorithms in Sections II and III do not require the
transmitters to listen to the control channel in order to decide
when to transmit packets. Thus the access delay is small no
matter how large the propagation delay.

Still, these algorithms all suffer from the fact that the
maximum throughput per station decreases as the number
of stations increases. Therefore, a final, more sophisticated
transmission algorithm is presented which can achieve a fixed
throughput, independently of the number of stations, and still
provide mean access delay which is negligible compared to the



360 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 41, NO. 2, MARCH 1995

propagation delay dprop. This is a random algorithm (which is
why the delay of a given packet is random) which uses a small
amount of feedback information. It is based on a result about
matchings in random graphs, similar to results in [7]}-[9].

II. ALGORITHMS USING SINGLE TRANSMISSIONS

In this section, transmission algorithms which are allowed
to transmit each packet only once are considered. The capture
capability cannot be used by such algorithms, for all packet
transmissions must be successful. First, a lower bound on the
maximum access delay for a given throughput is developed
for such transmission algorithms. Then two transmission al-
gorithms are presented. The first is a standard time-division
multiple-access (TDMA) algorithm applied to the basic model.
See [10] for a survey of TDMA algorithms. The second
algorithm, TDMA-2, achieves nearly twice the throughput of
TDMA. Both of the algorithms have maximum access delay,
dmax, Which is bounded as d;.;, tends to infinity.

The lower bound on maximum-access delay, given next, is
also an implicit upper bound on « for fixed values of n and
transmission algorithms which are collision-free. For fixed n,
the bound implies that unless a < 2/n, the maximum access
delay for any transmission algorithm which transmits each
packet only once grows at least linearly with dprop a8 dprop
and S tend to infinity. This result is nearly tight, for Theorem
2.3 below implies that if @ < 2/(n + 1) and if S/dprop — 0,
then access delay that grows less than linearly with dp.op can
be achieved by a collision-free algorithm.

Theorem 2.1: Let 0 < ¢ < 1 and dpr0p > 0 and suppose
a, S, and n are such that & > 2/((1 — €)n) + 1/S. Any
transmission algorithm which transmits each packet only once
has maximum access delay at least edpop-

Proof: The proof is of the contrapositive statement of the
theorem. Suppose there exists a transmission algorithm with
Amax < €dprop for any (a, S) arrival stream. It is shown that
a < 2/((1—¢€)n)+1/S. Consider one such algorithm and fix
a source ¢ and a destination j. Consider an arrival stream at
source 4 where the only arrivals are |S/2] packets at each
of the times 0, 5,28, -+, |dprop(1 — €)/S] 8, all bound for
destination j. These packets must depart strictly before dprop
and avoid collisions with packets from any other sources for
the maximum access delay assumption to hold.

No information about other source queues is available to
source ¢ until time dp;op. Thus source ¢ must transmit its pack-
ets without such information. Therefore, to avoid collisions,
the slots in which source i transmits its packets to j must be
distinct from the slots in which another source would transmit
the same arrival stream of packets for destination j. Because
any one other source could have the same arrival stream
and still be in compliance with the (a, S) constraint, these
departure slots must be unique for each source. Therefore,
since there are n sources

n|aS/2|{{dprop(1 — €)/5] + 1} < dprop
which implies that

n|a@S/2]{dprop(l — €)/S} < dprop

or that
(@S = 1)/2 < 8/(n(1 - )

which is equivalent to the desired inequality o < 2/(n(1 —
€)) + 1/8.

Advance scheduling of any («, S) traffic sequence is possi-
ble if a < 1/n, using the TDMA strategy defined as follows.
In slot k, station ¢ can transmit a packet to the station j such
that j — ¢ = &k (mod n).

Theorem 2.2: For a < 1/n, TDMA has the following
properties: The maximum access delay is no more than S and
the maximum line backlog is no more than aS.

Proof: Fix k > 0. Suppose for the sake of argument by
induction that the maximum line backlog for all slots up to
and including slot k — 1 is less than «.S. Consider a particular
line. The backlog of the line in slot k is equal to its backlog
in slot k£ — S plus the number of arrivals at the line during
[k — S+ 1:k+ 1) minus the number of departures from the
line during [k — S:k). By the induction hypothesis the line
backlog in slot k — S is less than or equal to aS. There are
at least |S/n| opportunities for departures from each virtual
queue in the line during [k — S: k), and because aS < |S5/n|,
all packets in the line backlog in slot £ — S depart before
time k. Therefore, because there are no more than «S arrivals
during [k — S + 1: k + 1), the backlog of the line is less than
or equal to @S in slot k. Also, dmax is at most S because
after its arrival a packet is transmitted within |S/n| frames
of length n slots.

By using the fact that the input streams to the source queues
are correlated through the («,S) constraint, an additional
factor of two over TDMA can be achieved for the maximum
throughput. The new two-phase algorithm, TDMA-2, is now
described. This is a batch algorithm. Let batch interval & be
[kS: (k+1)S). Packets arriving during batch interval & depart
during [(k 4+ 1)S — 1: (k + 2)S — 1). Packets depart either in
phase 1 or phase 2.

Phase 1 Transmission (The first [@S/2] slots of every S
slot batch interval): Any station with more than aS/2 packets
for a single destination at the beginning of a batch interval
transmits [.S/2] of these packets immediately in consecutive
slots. No other station has more than «S/2 packets for the
same destination because no more than .S packets in a batch
are bound for a single destination. Therefore, no collisions
occur. The control channel is used to notify the receivers about
packets sent in phase 1, in a tell-and-go fashion as described
in the Introduction. )

Phase 2 Transmission (The last n|«S/2] slots of every S
slot batch interval): In the current batch after phase 1, no
station has more than o.S/2 packets for a given destination,
and n|aS/2] slots using TDMA can evacuate the remainder
of the batch. In all, [aS/2] TDMA frames of length n slots
are used.

Suppose a < 2/(n+1). Then [aS/2] +n|aS/2] < S, and
both phases fit within a batch interval. The following theorem
follows immediately. :
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Theorem 2.3: For @ < 2/(n+ 1) and n > 2, TDMA-2
has the following properties. The maximum access delay is
no more than 25 and the maximum line backlog is no more
than 2aS.

III. A DETERMINISTIC ALGORITHM
USING MULTIPLE TRANSMISSIONS

Transmitting some packets more than once is useful at low
throughput. Collisions can occur, in the sense that more than
one source can transmit to a given destination in the same slot.
Any time a packet is not received due to a collision, a particular
transmission algorithm must guarantee that a duplicate of
that packet is received during the same batch interval. This
guarantee is provided by repeated transmissions of any packet
that can possibly collide with others.

The algorithm TDMA-L introduced here, is a two-phase
batch algorithm similar to TDMA-2. Phase 1 has L TDMA
frames of length n slots. We will show later how to find the
optimal L. Phase 2 has multiple transmissions of those packets
which do not depart in phase 1. Transmission of a fixed batch
of packets with maximum line sum «.S is now described.

Fix a destination (receiver). For the algorithm description
and proof of the following theorem, all packets are bound for
this destination. The analysis holds for any destination. The
receiver is notified of arrivals via the control channel in a tell-
and-go fashion so that the transmission times of all packets
are known to the receiver before phase 2 reception. Let M; be
the number of packets at source i.

Phase 1 Transmission (The first nL slots of every S slot
batch interval): Each source 4 transmits min {L, M;} packets
using L, TDMA frames. Thus no more than L packets can
be sent by a single source. Note that no line has more than
aS — L packets after phase 1.

Phase 2 Transmission (The last S — nL slots of every S
slot batch interval): Let

T; = [L-li-l(ang")J + 1.
Each source i transmits each remaining packet exactly 7} times
in any order. The control channel is used to notify the receivers
about packets sent in phase 2.

Phase I Reception: Every packet sent in phase 1 is received
without conflict because TDMA slots are all reserved.

Phase 2 Reception: The reception of phase 2 packets is
coordinated by the use of maximum matchings. Consider the
following bipartite graph G = (U, V, E) where

U = {nodes representing all phase 2 packets}
V' = {nodes representing phase 2 slots}
E = {(u,v):u € U,v € V, packet u is sent during slot v}.

It is shown next that the receiver can find a (maximum})
matching on G that covers U, so that all phase 2 packets
can be received. The transmission schedule is given by the
matching. Let » be the number of sources with at least one
packet after phase 1. Note that the degree of any node in V' is
less than or equal to 7). Let u be a given node in U. The degree
of u is T;, where ¢ is the source corresponding to u. The arrival

TABLE I
VALUES oF L wHicH MINMIZE | 4(L)] OVER INTEGERS L
n=10 10*° 10° 10* 10°
a$=10 2 0 0 o o
107 26 8 2 0 0
10| 267 82 28 9 2

104 2679 822 289 94 30

10°% [ 26794 8221 2900 943 307

constraint (no more than «.S packets for the fixed destination)
requires that M; + (7 —1)(L + 1) < aS. To see this note that
source ¢ has M; packets and the other n — 1 sources have at
least L + 1 packets before phase 1. Rearranging this inequality
and using the definition of T; gives n < T;. Thus the degree of
any node in V' is less than or equal to the degree of any node
in U. This, by a well-known consequence of Hall’s Marriage
Theorem [11], implies that there is 2 maximum matching for
G that covers U.

Next, the maximum length of phase 2 is determined, which
implies a constraint on S, because a batch must be completed
in S total slots. Focus on a source ¢ which has M; packets in a
batch for the given destination. The worst value of M; and the
best value of L are considered. Assume that L+1 < M; < oS
because if M; < L then phase 2 is not needed. Let ((M;, L)
be the average number of phase 2 slots needed per packet for
a given batch at source i. Note that (dropping the subscripts
on T and M for convenience),

M-L)T
cm, ) = M- DT M) )
M~-L|laS-M
=M [TH— IJ @

The average number of phase 2 slots needed per packet
at any source 7 (even if the source has packets for more
than one destination) is thus at most ((M*(L),L), where
M*(L) is obtained by maximizing {(M, L) with respect to
M over the range L +1 < M < «S. Careful examination
of ¢ shows that either M*(L) = L+ 1 or aS — M*(L) is
a multiple of L + 1 so that the |-]| in (2) can be removed
before maximization if the maximization is restricted to the
set {L+1}U{aS—q(L+1):q=0,1,---, [aS/(L+1)|}. If
the || is removed, then the function {(M, L) is convex in M,
and the derivative d((M, L)/OM has its only root at M =
v L(aS + L + 1). Therefore, the maximizer M*(L) can be

found by checking only three values: L+1 and the two integers
of the form aS — q(L 4 1) nearest to \/L(aS + L + 1).

Define ¢(L) = nL 4+ aS((M*(L), L). Then |9(L)] phase
1 and phase 2 slots are sufficient to transmit a batch of packets
with line sums at most a.S using TDMA-L, because source 3
has at most .S packets for all destinations combined. Herce, if
S > [9(L)] (for given n and ), TDMA-L works properly,
so that the maximum access delay is at most 25. Table I lists
values of L which minimize |v(L)], and Table II lists the
corresponding values of aS/|#(L)], which is the throughput
achievable if § = |y(L)].
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TABLE II
MAXIMUM VALUES OF S/%(L) (ACHIEVABLE VALUES OF )

n=10 10? 10% 10* 10°

aS =10| 0.2857 0.1000 0.1000 0.1000 0.1000

10% | 0.2564 0.0694 0.0220 0.0100 0.0100

10° | 0.2536 0.0667 0.0190 0.0058 0.0020

104 | 0.2533 0.0664 0.0187 0.0055 0.0017

105 | 0.2533 0.0664 0.0187 0.0055 0.0017

For example, if there are n = 100 stations and S = 100,
then (o, S) traffic is supported by TDMA-L with L = 8 if
o = 0.0694 and S = |9(L)| = 1442 = 100/0.0694. Of the
1442 slots per batch in this example, 800 are used by the phase
1 TDMA. The next theorem presents achievable values of o
for large n and S.

Theorem 3.1: Given any e > 0, for large enough n and oS
with n < (aS)?7, if @ < (1 —€)/(2y/n), TDMA-L has the
following properties: The maximum access delay is no more
than 25 and the maximum line backlog is no more than 2a.S.

Proof: Suppose that oS and n approach infinity with
n < (aS)?~¢ and L — oo such that L/aS — 0. For large &5,
n,and L, M*(L) = V'LaS and ((M*(L), L) = aS/L so that
(L) = nL + («S)?/L, which is minimized at L = aS//n.
This value of L is consistent with the assumptions L — o0
and L/(aS) — 0. Substituting this value of L into /(L) gives
#(L) & 2y/naS. The inequality |3 (L)} < S thus holds for
large n if @ < (1 — €)/(2y/n) and the theorem is proved.

To see that the approximation is good, note that the values in
Table II for S > n are close to 1/(24/n). An open problem is
to develop a companion result to Theorem 2.1 for transmission
algorithms which are allowed to send packets multiple times,
providing a converse to Theorem 3.1. In particular, it is
conjectured here that o > (1/+/n) with n = oS causes any
transmission algorithm to have maximum access delay which
grows at least linearly with djop for sufficiently large dprop-

IV. A RANDOMIZED ALGORITHM
USING MULTIPLE TRANSMISSIONS

This section suggests how to transmit (c, S) traffic for large
propagation delay with a < %1. This is significant because
the algorithms described above require a value of « which
is decreasing in the number of stations. The algorithm itself
introduces randomization, so that although a fixed determin-
istic input sequence is assumed, the access delay of a given
packet is random. Roughly speaking, it is shown that, using
randomization and a small amount of feedback, the mean
access delay can be made small compared to dprop if a < %.

As noted in the Introduction, another strategy, appropriate
for any a < 1, is to first announce the arrival of packets on the
control channel. After a delay of at least dp.op, the packets can
then be scheduled in a conflict-free fashion [6]. This leads to
mean access delay at least as large as djrop, Whereas here and
elsewhere in this paper the goal is to make the access delay
small compared to dp;op- The algorithm of this section can be

Transmitter

Receiver
Transmitter

e
Receiver - Phase 2

2

Fig. 2. Timing of algorithm.

viewed as the notify-and-schedule algorithm, but with three
early transmissions of each packet inserted, in an attempt to
get packets to their destinations sooner.

The transmission algorithm is first described, and then the
delay is analyzed. The delay of any fixed packet is random
because the algorithm is random. Frame f refers to slots
[fM:(f + 1)M) where M, the frame length, is a multiple
of &S (M = lasS). For brevity, the transmission algorithm
is described for packets arriving during frame 0. These are
referred to as frame O packets. The description applies to
packets arriving during frame f by adding fM to all of the
times.

The transmission algorithm attempts to minimize collisions
by randomly spreading out transmissions over a long period
of time. Packet transmission occurs in two phases. During
phase 1, each packet is transmitted three times in randomly
chosen slots. Before phase 1 transmission begins, messages are
transmitted on the broadcast control channel which describe
when transmissions will occur during the phase. The algorithm
uses the tell-and-go mechanism, so that phase 1 transmission
can begin before the control channel information is received.

The beginning of phase 2 transmissions is at least dyrop time
units after the beginning of phase 1 transmissions. Phase 2 may
need to begin somewhat later (by a time interval called dsync
below) in order to avoid the phase 1 transmission interval
of another batch of packets. By that time, the stations all
know when the phase 2 packets will be received. They can
all separately compute which packets will be captured, and
which will not. During phase 2, those packets which are not
captured (or will not be captured) in phase 1 are scheduled for
transmission in phase 2 using conflict-free scheduling. Phase 1 '
thus uses 75% of the total transmission slots and phase 2 uses
the other 25%. Under the assumption that o < 1/4, the phase 2
slots are sufficient to transmit all packets that are not captured
in phase 1, even if no packets are successful in phase 1.

See Fig. 2 for the timing of this two-phase algorithm. The
three parallel axes each represent the time axis, though the
second axis has a fixed offset from the first, and the third has
the same fixed offset from the second, because the algorithm
is designed for dyop substantially larger than M.

Phase 1 Transmission: Frame 0 packets arriving at a partic-
ular source are transmitted in an interval of length %M . Before
any transmission, the whole frame must be accumulated and
all destinations must be notified of the packet transmission



HAJEK AND WELLER: NONUNIFORM TRAFFIC IN PACKET SWITCHING SYSTEM WITH LARGE PROPAGATION DELAY 363

slots. This requires an accumulation delay d... from the start
of frame 0 until the first packet of the frame can be transmitted.
A frame O packet which arrives at a particular source during
batch interval b is assigned three distinct slots chosen uni-
formly at random from among all slots in [dace: dace + 3 M)
which have not already been assigned by the source to other
frame O packets. These are the packet’s phase 1 transmission
slots s1, s2, and s3. If the packet arrives during batch interval
b (within frame 0), then during batch interval b+ 1, the vector
(source, destination s1, s3, s3) is sent on the control channel to
announce the future transmissions. Because a batch contains
no more than aS packets, these control information vectors
can be accommodated one per slot. Finally, the packet is
transmitted during slots s, so, and s3. Set dpec = M + aS.
This assignment of d,.. leaves adequate time for the sources to
accumulate and announce transmission times of packets before
actual transmission occurs, as described. Note that d,.. < 2M.

Phase 2 Transmission: At time dacc + dprop, a source
knows whether a particular frame O packet will be captured
during phase 1 reception. The packets which are not captured
in phase 1 are scheduled in slots [dacc + dprop + dsync:
dace + dprop + doync + 2 M), where dgyyc is a synchronization
delay of at most M slots, chosen to avoid overlap of phase 1
and phase 2 transmissions. If dp,o, has the form (k + %)M
for some integer k, then dgy,. can be taken to be 0. The
scheduling can be accomplished by a transmission algorithm
based on maximum matching because there are no more than
aM frame O packets for any destination and at any source.
Such algorithms are well-known for applications in satellite
transmission scheduling [12].

Phase 1 Reception: Focus on a particular receiver, which
during slots [dace+dprop: dace+dprop+ 5 M) receives frame
0 packets sent in phase | from all sources. Let R denote the
number of such packets. Note that R < oM by the assumption
that the traffic sequence is («,.S). The locations of each frame
0 packet’s three transmission slots are known to the receiver
by time dace + dprop. This allows the receiver to construct a
directed bipartite graph G = (U, V, E) where

U = {nodes representing frame 0 packets destined for the
receiver}, |U| = R

V' = {nodes representing the slots to receive frame 0
packets}, |V|=3M/4

E = {(u,v):u € U,v € V, packet u is sent during slot v}.

Consider any matching on G. Each slot in V is matched to
at most one packet in U and each packet in U is matched
to at most one slot in V. Unmatched slots in V' are unused
for reception of frame O packets, and unmatched packets in
U are not successful in phase 1. To maximize throughput in
phase 1, the choice of which packet to receive in each slot is
made by finding a maximum matching on G. An example is
shown in Fig. 3.

Phase 2 Reception: Even though most frame O packets
succeed in phase 1, some packets may fail. During slots
[dacc + derop + dsync: dlacc + 2dpl‘0p + dsync + M/4)v these
leftover packets are received without conflict, due to the
scheduling in phase 2 transmission.

nodes in U,
Fig. 3.

@ rodesin U,

Phase 1 reception.

This completes the description of the transmission algo-
rithm. The mean access delay is close to the minimum pos-
sible, as shown by the next theorem which is proved in the
Appendix.

Theorem 4.1: Choose any a < i, integer S > 1, and
€ > 0. If dprop is sufficiently large and the above randomized
transmission algorithm is used, then the following is true:
Given any («,S) arrival sequence and any fixed packet p
in that sequence, the expected access delay of the packet d,
is at most edprop. The maximum access delay is at most
(1 + €)dprop.

The algorithm is conservative in the sense that each packet
is guaranteed success on its first transmission in phase 2. Less
conservative transmission algorithms may provide smaller
mean access delay but larger maximum access delay.

The algorithm yields bounded access delay for any M, but
the mean access delay may be larger than necessary if too
small a value for M is chosen. There are two ways to make
M = laS large. First, ! can be made large. Second, each
batch interval can be extended by making S large, although
delay also increases for finite dj,op. In either case, M must
be o(dprop) as dprop tends to infinity in order to achieve the
goal of making the mean access delay o(dprop).

The control information required is relatively small, but
computation can be prohibitively large without some mod-
ification. The algorithm as given requires each source to
execute the maximum matching algorithm for each destination
to which it sends packets in order to determine phase 1
succcesses. In practice, it is probably desirable to wait an
additional dp., before phase 2 to allow feedback information
from phase 1 to propagate back to the sources, and then
the algorithm can send explicit phase 1 acknowledgments
over the control channel. The maximum matching at each
receiver can proceed incrementally as each net control in-
formation vector is received. Because a packet seldom waits
until phase 2, the additional delay does not affect the result
in Theorem 4.1. If o < 1/5, greedy scheduling based on
maximal matchings suffices for the transmission scheduling in
phase 2, with a 60%/40% allocation of slots between phases
1 and 2. This lowers the computational burden for phase 2
considerably.
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V. CONCLUSIONS

As stated in Theorem 2.1, the successful transmission of
(v, 8) traffic in a system with large propagation delay yields
large maximum-access delay, assuming each packet is trans-
mitted only once. Significant improvement results if packets
can be transmitted more than once, as shown in Section IIL.
Finally, mean access delay of not much more than djop can
be achieved for very large dprop and throughput up to 1/3, as
shown in Section IV, demonstrating that a globally known state
is not necessary to capture most packets without feedback.

We leave open the question of whether « larger than
Q(1/+/n) can be supported with maximum delay smaller than
dprop /2. as n tends to infinity. (We conjecture the answer is
no.) Also unknown is how large o can be so that the mean
access delay, divided by dp.op for some random transmission
algorithm tends to zero in the limit for large dyrop. We showed
a < 1/4 is sufficient and conjecture (see end of the Appendix)
that o < 1/2 is best possible.

V1. APPENDIX
PROOF OF LARGE PROPAGATION DELAY THEOREM 4.1

Fix any receiver. The key to the proof of Theorem 4.1 is to
show that phase 1 is successful with high probability. That is
the purpose of the next lemma. Let G be any possible bipartite
graph constructed for phase 1 by the receiver as described
above. Let Y = (Uy,---,U,) be a partition of U, where U; is
the set of nodes corresponding to packets transmitted by source
1. The phase 1 transmission slot selection algorithm constructs
G from U and V. Let Py be the probability that a maximum
matching on G does not cover U, given a partition i.

Lemma A.1: For o < 3

max Py —0, as M — oo.

U:|U|<aM

Lemma A.1 is proved after a technical lemma is presented.
Fix any A C U. The edge set E4 = E N (A x V) contains
only edges from E which have a node in A. Analysis of
the matching used in phase 1 reception is facilitated by the
introduction of sets E® and E!, where E' has the same
distribution as E*, and the sets are constructed as follows.
Define A; to be the subset of A corresponding to source
1 packets. Each packet u € A chooses any three elements
v1(u),v2(u),v3(u) € V, uniformly at random, independently
of all other packets in A. Let all such selections determine
EY, so that E® = {(u,v1(u)):u € 4,1 = 1,2,3}. Note that
the vectors (v;(w), v2(u),va(u)) and set E° are similar to the
transmission slot vectors of (s1, s2,s3) and set E4, but that
source conflicts can occur in E°. A source conflict occurs if for
some %, there is more than one edge from A; to some v. This
violates the basic model constraint of one packet per source
per slot. The set E is now modified for each v € V' to remove
all source conflicts. The heads of all but one of the conflicting
edges are moved to new nodes in V. Each new node is chosen
uniformly from all nodes, which does not create a new source
conflict. The modified set with all source conflicts removed is
labeled E'. The construction of E° and E! is complete, and
it is clear that E“ and E' have the same distribution. Fig. 4
illustrates an example of the construction of E! from E°.

. nodes in the shadow of A

@ nodesin A,

Fig. 4. Removing source conflicts.

@) nodes in A,

Recall that for any edge set E, the shadow of A is defined
as Sp(A) = {v € V:(u,v) € E,u € A}. Clearly, Spa(A) =
Sg(A). Fix any B C v. Because E4 and E' have the same
distribution, P{Sg(A) C B} = P{Sm(A) C B}. Also,
because Sgo(A) C Sgi(A) by construction, P{Sg(A) C
B} < P{Sgo(A) C B}. Therefore, the following lemma
holds.

Lemma A.2:

P{Sg(A) C B} < P{Sge(A)C B}, VACU, VBcCV.

Proof of Lemma A.l: Because Py is not decreased if
additional packets are added, it is enough to show that

max as M — oo.

Pu — 0
U:|U|=aM !

Hall’s Marriage Theorem allows P, to be written in terms of
the shadows of subsets of U. For arbitrary i with |U| = aM,
Py=P{3ACU,3B CV with |B| = |4]| -1
and Sg(A) C B}

Z P{Sg(A) C B} by union bound
A,B:|B|=|A|-1

D

A,B:|B|=]A|-1

i=1

IA

IN

P{Sgo(A) C B} by Lemma A2

aM : ? . 3¢
<5 () (4F) ()
=~ i 3 3M
by Stirling’s bound

_az)% 16ae?i\"
=AY

aM N
ci\* 160e®
:C’/M+Z(—) ) where C = )
1=2 M 9

The ratio of con§ecutive terms in the last sum above is
(C/M)((i+1)/4)*(¢+1). This ratio is positive and increasing
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in 4. Thus the maximum term in the last sum is either the ¢ = 2
term or the ¢ = oM term. Therefore

Py < C/M + (aM - 1) max {(2C/M)Z,(Ca)>M}.

Because Cao < 1 and U is arbitrary, the lemma follows.

Proof of Theorem 4.1: Lemma A.1 shows that the probability
of an arbitrary packet being successful in phase 1 can be made
arbitrarily close to 1 for large enough M. If successful, a
packet’s access delay is no more than d,.. + %M . If not, then
a packet is scheduled in phase 2 and suffers additional delay
no more than dyrop + dsync — M.

Fix any € > 0. Choose M large enough such that

max Py <¢/3 3)

U:|U|=aM

which is possible by Lemma A.1 and suppose that dprop >
9M /e. Consider any (e, S) arrival sequence and let p be an
arbitrary packet in the sequence. Equation (3) implies that all
packets that arrive during the same frame as p (including p)
are successful in phase 1 with probability at least 1 —€/3. The
expected access delay of packet p is then

d, < E[Phase 1 delay] + (¢/3) E[additional phase 2 delay]
3 1
S dacc + ZM + (5/3) <dprop + dsync - EM) .
Recall that dgyne < 3M/4 and dpec < 2M, so that

eM )
12dprop )

3IM ¢
dp S dpro]:(d—p_r;; + g +

The last three terms are smaller than or equal to ¢/3 and
therefore d, < edprop. The maximum access delay is at most
dace + dprop + dsync + M/4 <3M + dprop < (1 + f)dprop»
This completes the proof of Theorem 4.1.

If source conflicts are ignored, then Lemma A.1 holds for
a < 1/2 according to [7]. The proof technique used there
does not allow the application of Lemma A.2. It is conjectured
here that Lemma A.1 is true for o < 1/2 with source conflicts
removed, because removal only increases the size of shadows.
This yields o < 1/3 as a sufficient condition for Theorem 4.1
with the conservative approach. It is also clear that o < 1/2
is necessary for the two-phase approach followed here if each
packet is to be sent twice in phase 1.
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