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On Variations of Queue Response for Inputs with
the Same Mean and Autocorrelation Function

Bruce Hajek,Fellow, IEEE, and Linhai He

Abstract—This paper explores the variations in mean queue
length for stationary arrival processes with the same mean and
autocorrelation functions, or equivalently, the same mean and
power spectrum. Three types of processes, namely, two-state
Markov-modulated Poisson processes, periodic-sequence modu-
lated Poisson processes and processes generated by randomly
filtering a white noise process, are investigated. Results show
that the mean queue length can vary substantially for the first
type of process, and can vary moderately for the second type of
process, as the parameters of the processes are varied, subject
to a specified mean and autocorrelation function. However, the
mean queue lengths for the third type of arrival processes are
determined by the input mean and autocorrelation functions. The
results suggest that queueing performance can be hard to predict
from spectral data alone when the power in low frequencies is
large.

Index Terms—Multiplexing delay, queueing, spectral analysis.

I. INTRODUCTION

T RAFFIC STREAMS can be rather complex, so an impor-
tant question is how to characterize them in a way that is

easy to measure, and easy to relate to queueing performance.
An approach, widely used through the years, has been to
measure some statistics of a traffic stream, match the stream
to a statistical model, and then base performance analysis and
considerations, such as admission control and buffer sizing, on
the selected model. For example, the interarrival distribution
might be estimated, the arrival process modeled as a renewal
process, and classical queueing theory used to derive bounds
and approximations on queue lengths. Another characteristic
that can be used is the mean and autocorrelation function
of the arrival process; that is the focus of this paper. Since
the processes we consider are assumed to be stationary, the
autocorrelation function has the same information as the power
spectrum.

Use of the spectrum of an arrival processes to help predict
queue performance was extensively explored in [1]–[3]. The
study [2] provides clear evidence that of four input statis-
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tics: 1) input power spectrum; 2) input bispectrum; 3) input
trispectrum; and 4) one-dimensional marginal distribution, the
input power spectrum is most essential to queueing analysis.
Clear evidence is given in [1]–[3] that input power in the
low frequency band has a dominant impact on queueing
performance, whereas high-frequency power to a large extent
can be neglected. Moreover, spectral characterization is an
appealing tool for traffic modeling, because rich theories
and techniques are available for the spectral estimation of
stochastic processes, and spectral measurements are fairly easy
to obtain. In addition, many traffic streams, such as video
traffic with an underlying frame structure, exhibit nontrivial
spectral structure.

The aim of this paper is to study in a clear and simple con-
text the extent to which the mean and autocorrelation functions
of an arrival process determine the mean length of a queue
with a single, deterministic server (i.e., type server).
Given the promise of spectral methods for queuing analysis,
practitioners would want to have rough guidelines about how
well spectral data alone predicts queueing performance. They
would also want to understand the extent to which spectral
data specifies the statistics of a data sequence. Finally, they
would want guidelines as to when spectral data is likely to
need augmentation. Our findings regarding these issues are
summarized in the final section.

The work [1], [2] focused mainly on the impact of input
power spectralvariation, especially in the low frequency
region, on the queueing performance. In contrast, this paper
mainly studies the impact of other input variations on the
queueing performance for agiven input power spectrum. Re-
cent related work [5] indicates that use of the one-dimensional
marginal distribution of the rate, can be used in conjunction
with spectral statistics, to improve predictions in the case of
processes with large power in the low frequency range.

Three different types of random processes are explored.
Two-state Markov modulated Poisson (MMP) processes and
periodic-sequence modulated Poisson (PSMP) processes are
considered in Sections II and III. These types of processes
were both considered in [1] and are both special cases of the
discrete version of the circulant modulated Poisson processes
investigated in [2]. A large class of randomly filtered white
noise processes is considered in Section IV. Conclusions are
given in Section V. In closing this section, we remark that
the mean values of the random processes considered in this
paper are determined by the power spectra (see the Appendix).
Therefore, it is not necessary for us to explicitly match the
means of the processes, but we do so for clarity.

1063–6692/98$10.00 1998 IEEE
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II. QUEUE RESPONSES FORTWO-STATE MMP PROCESSES

MMP processes, in which the modulating Markov process
has two states, are the arrival processes investigated in this
section. First such processes are described, and then the
variation in queue response is explored.

A. Source Model

A discrete time MMP process can be described
as follows. There is a stationary discrete time Markov process

, and for each possible state of there is
a specified mean number of arrivals. The rate process

for is defined by . Given , the
variables are conditionally independent Poisson random
variables with . In this section the Markov
process is taken to have states and , with one-step
transition probability matrix written as

The associated input rate vector is denoted by .
In this two-state case, the rate processitself is Markov.

The mean and autocorrelation functions of the rate process
are given by

(2.1)

(2.2)

where is the steady-state probability distribution for
. Since , can be expressed as

(2.3)

where is the variance of and is the smaller eigenvalue
of , i.e., .

It is easy to show that , and the autocorre-
lation function of the arrival process is related to that of
by where denotes

if
else.

(2.4)

The term accounts for the wide-sense white noise induced
by the modulation operation. In the frequency domain, this
additional term in simply corresponds to adding a constant
term to the power spectrum of . Therefore, and
are nearly equivalent. For convenience, we specify instead
of in this section.

B. Matching Input Autocorrelation Functions

By (2.3), the mean and autocorrelation function of a two-
state MMP process is completely characterized by three pa-
rameters: , , and . However, one needs four parameters,

, , , and , to specify such a process. Therefore, for any
given autocorrelation function in the general form of (2.3), one

Fig. 1. 
1 versus
0, given 
 = 0:8,  = 1, and� = 0:25.

can synthesize infinitely many different arrival processes with
the one extra degree of freedom.

Use (2.1) and match (2.2) and (2.3) to obtain a set of three
equations:

(2.5)

with four constraints:

(2.6)

Choose as the free variable and solve the above equations
to yield

(2.7)

with constraints

for

for
(2.8)

assuming . According to these equations, can
take any value in . As converges to , increases
toward , decreases to while approaches . This
shows how vastly different two arrival processes can be while
having the same mean and autocorrelation functions. Figs. 1
and 2 show how , , and vary as ranges over ,
given , , and .

Note that if we restrict attention to two-state “on-off”
sources by fixing , then the model is completely
determined by the autocorrelation function. In the general case
one could decompose the arrival process as the sum of an
on–off process with ratesand , and a Poisson process
with fixed rate . The variation of the average queue length
as investigated in the next section is solely due to variations
in , the fixed rate portion of the total arrival process.
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Fig. 2. � and� versus
0, given
 = 0:8,  = 1, and� = 0:25.

Fig. 3. Mean queue length versus
0, given 
 = 0:25,  = 0:0625, and
� = 0:9.

C. Queue Responses

Consider a discrete time queue with unit service time,
with the two-state MMP arrival process described above.
The mean queue length is readily calculated, since the
queue is an phase type process [6], [7]. The equations
we used can be found in [8] and are omitted here. Rather, some
numerical results will be described.

Fig. 3 shows the variation of mean queue length as a
function of . As seen from the plot, plays an important
role in the queue response. Whenis small (within the range
of ), the variation of the mean queue length is
also relatively small. However, as increases toward,
increases quickly to reach the maximum. To quantitatively
describe the variation of , define

, where the min and max are taken with respect to. The data
for Fig. 3 yield . While elsewhere
in this paper we focus on the mean queue length, we note
for this example that the second moment and variance of the
queue length exhibit a very large variation, since they both
tend to infinity as .

In order to examine the maximum possible variation of the
mean queue length, we plot for fixed in Fig. 4,
and for fixed in Fig. 5. Fig. 4 indicates that is large in the
region where both and are small. However, in this region

is small, so that the large values of(in which differences
are normalized by min ) might not be significant in appli-
cations. To focus on the variation more fully, consider Fig. 6,
which shows both the maximum and minimum values of
for fixed. For example, for and , we find

Fig. 4. �(
;  ; �) as a function of
 and , with � = 0:9.

Fig. 5. �(
;  ; �) as a function of
 and�, with  = 0:25.

Fig. 6. min(E[q]) and max(E[q]), as a function of
 and , for � = 0:9.

that ranges from 0.81 to 3.2, as varies. This is a factor
of four difference in mean queue length for the same mean and
autocorrelation of the input, but we might term as being
moderate throughout this range. For a given, Fig. 5 indicates
that is large for moderate values ofand close to unity. In
this case, both the relative and absolute variation of for
a fixed mean and autocorrelation function of the input can be
significant. To illustrate the variation of queue response under
an extreme case, Fig. 7 shows the mean queue length with

, , and , which leads to .
The largest relative differences in mean queue lengths (i.e.,

largest values of ) are observed for near one. This is
the case that there is the most power in low frequencies, or
equivalently, the longest range statistical correlations.

Note in Figs. 4 and 5 that for heavy loads (i.e.,near
one), the variation is not large. An explanation for this is that
in heavy traffic the arrival process is averaged over long time
periods by the queue. Therefore, the central limit theorem (i.e.,
diffusion approximation) holds, so that the response is mainly
determined by the mean and autocorrelation function of the
arrival process.
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Fig. 7. Mean queue length versus
0 in an extreme case:
 = 0:2,  = 0:1,
and � = 0:998.

III. QUEUE RESPONSES FORPSMP PROCESSES

In this section, we first describe the model for a PSMP
process and give its mean, autocorrelation function and power
spectrum. Then we show how to synthesize different PSMP
processes with the same mean and autocorrelation functions
through phase manipulation, and examine the resulting varia-
tion of the queue responses.

The paper [1] examined a different approach for generating
PSMP processes with the same mean and autocorrelation
function. The rate process was taken to be the sum of two
sinusoidal inputs, and variations of the phases of the two inputs
were explored. It was found that the effect of changing the
phases is negligible unless the frequencies of the two signals
are harmonically related, in which case the mean queue length
varied by up to 25% as the phases varied. Larger variations
are found for the phase perturbation method explored in this
section.

A. Source Model

A discrete-time PSMP process is a doubly
stochastic process modulated by a rate process .
Given , the variables are conditionally independent
Poisson random variables with . The process

itself is a random periodic sequence with period, defined
as

for some finite sequence and a
random variable uniformly distributed on

.
A PSMP process is also a MMP process as described

in Section II, since the rate process can be written as
, where is a Markov process with the ring-type

deterministic transitions illustrated in Fig. 8.
The mean and autocorrelation functions of the rate process
are given by

(3.1)

(3.2)

Fig. 8. State transition diagram of a ring-type periodic Markov chain.

Therefore, the mean of equals the arithmetic average of
the finite sequence, and the autocorrelation of equals the
periodic autocorrelation function of.

The power spectrum of , which is defined as times
the discrete Fourier transform (DFT) of one period of ,
can be found as

(3.3)

where is the DFT of . The power spectrum is normalized
so that the sum of the is , the total power.

As noted in the previous section, the mean of the arrival
process equals , and its autocorrelation function

is given by . For convenience,
as in the previous section, we focus on instead of
in this section.

B. Matching Input Power Spectra

By (3.3), the power spectrum of the rate process is
completely specified by the magnitude of. Therefore, we can
synthesize a given input power spectrum by two different rate
processes, constructed from two finite sequences which have
DFT’s with the same magnitude but different phase spectra.

Consider a special case ofdefined as

Its DFT is

else.

Assuming , we change the phases of and by
an amount for a single index with .
The resulting perturbation of, denoted by , is

else.
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Fig. 9. Mean queue length as a function of� with N = 150, 
 = 0:85,
m = 1, and b = 0:8
.

Taking the inverse DFT of , we have a new finite
sequence denoted by

(3.4)

for . For to be a valid arrival rate
sequence, has to be nonnegative for .
A sufficient condition on and , allowing us to vary and

over the full range and ,
is that (implying ) and

(implying for ).
Equivalently, it suffices that

or in terms of and ,

(3.5)

In summary, if , , and satisfy condition (3.5), then for
any and as above, is a nonnegative sequence with

and . The synthesized PSMP process
thus has the same mean and power spectrum for alland .

C. Queue Responses

Consider a discrete time queue with unit service time,
with a PSMP arrival process as described. We again used the
theory of phase-type processes [6]–[8] to evaluate the
mean queue length with the mean and autocorrelation
functions of the arrival process fixed.

Fig. 9 shows the mean queue length as a function ofwith
, and . To quantitatively

describe the variation of , define

The data for Fig. 9 yield .
Fig. 10 shows as a function of with , ,
and , in which drops sharply as increases. This

Fig. 10. � as a function ofm, with N = 150; 
 = 0:9, andb = 0:8
.

Fig. 11. � as a function ofN , with 
 = 0:9, m = 1, andb = 0:8
.

is because as increases, we are modifying the phase of
a higher frequency component of, so the effect on
becomes less important. This is why, although we could vary

and arbitrarily, we restrict attention in what follows to the
case . We examine how each of the three parameters,

, and , may affect . Note that the input power spectrum
also changes as , or varies.

Fig. 11 shows as a function of with , ,
and . A fluid-limit analysis can be used to show
that converges as , and the limit is roughly
2.5, representing a 3.5-fold difference between minimum and
maximum mean queue sizes. (The rate of convergence is slow.)
Note that the DC power in the arrival process is ,
whereas for large the power at other frequencies is given
by for . Thus, the ratio of power
at the DC level to total power tends to zero astends to
infinity. Basically, for large , there is a large (order of )
burst of arrivals once every time slots, causing a nearly
flat power distribution. The variations of do not effect the
power spectrum, but effect the phase of the lowest nonzero
frequency component of the process.

Fig. 12 shows as a function of with , ,
and . For , increases as increases,
as expected. However, decreases for larger values of.
An explanation for this is that the diffusion approximation
becomes valid under heavy load conditions (i.e.,close to 1),
so that the queue response is mainly determined by the input
mean and autocorrelation functions.

Fig. 13 shows as a function of with ,
, and . By (3.5), the allowable range of

is . It shows that drops from its maximum,
which is achieved at , to zero as approaches . This
is because if , then unless , so that no
phase change is possible.
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Fig. 12. � as a function of
 with N = 150, m = 1, andb = 0:8
.

Fig. 13. � as a function ofb with N = 150, 
 = 0:9, andm = 1.

Fig. 14. Model for the generation of a randomly filtered arrival process.

IV. QUEUE RESPONSES FORPROCESSES

GENERATED BY RANDOM FILTERING

In this section, arrival processes generated by random filter-
ing are described and corresponding expressions for the mean
length of an are given. Finally, the relationship between
input autocorrelation function and the mean queue length is
examined for a subclass of the processes.

A. Source Model

A randomly filtered process can be generated
by passing a white noise process through a filter
with random coefficients. The coordinates of bothand the
filter take values in . Fig. 14 shows the basic model for the
generation of a randomly filtered process. For the purposes
of exposition, we think of there being messagesinitiated
at time , such that each message stimulates a set ofpacket
arrivals, according to the random filter.

The filter is denoted by : , where
is the number of packets generated at time by

the th message (if any) arriving at time. Therefore,
can be viewed as a random impulse response function seen
by the th message. Hence, the number of packets to arrive

at time is given by

(4.1)

It is assumed that the one-dimensional processes
: indexed by and are independent

of each other and identically distributed. For brevity, be-
low we write for and for

(since these quantities do not depend
on or ) and for
(which does not depend on). An additional assumption is
placed on below in order to make analysis of the queue
tractable.

The mean and autocorrelation functions of can easily be
found to be as follows.

(4.2)

(4.3)

for . A derivation of (4.3) is given in the Appendix.

B. Queueing Analysis

Consider a discrete time queue with unit service time,
with the randomly filtered arrival process . Denote this
queue by queue 1 and its mean queue length by.

To derive , we first construct another queue called queue
2 with exactly the same sequence of message initiations and
same total number of packets associated with each message,
but with the modification that all packets associated with a
message arrive at the same time the message is initiated. Thus

, the number of the packets to arrive at timefor queue
2, is given by

Let denote the mean queue length of queue 2. Further
impose the following constraint on :

for (4.4)
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where is the random length of the
impulse function. Condition (4.4) ensures that whenever the
service begins on a message in queue 1, the server is not
idle until all packets of the message have been served. This
implies that the departure processes of queue 1 and queue 2
are exactly the same. Therefore, , where
is the average number of packets which have arrived at queue
2 but which have yet to arrive at queue 1. At any time, the
number of such packets is

and its mean is

Since queue 2 is a discrete time queue, its mean
queue length is given by

(4.5)

where

(4.6)

C. A Special Model

Due to the complexity of (4.3), we consider a special model
of the filter, with impulse function defined as

where is a positive integer-valued random variable with
mean and second moment , is a geometrically
distributed random variable with parameter, i.e.,

, for , and and are mutually
independent. Hence, the mean and covariance function of
are, respectively

Then by (4.2),

and by (4.2), the autocorrelation function can be found as

(4.7)

The mean and second moment of the corresponding batch
arrival process is

The mean number of arrivals at queue 2 yet to arrive at queue 1
is

(4.8)

Therefore, the mean queue length is

(4.9)

D. Matching Input Autocorrelation Functions

Given any , , and , (4.7) shows
that there are processes obtained by random filtering using
the special model of filter above, which have a specified
autocorrelation function of the form

(4.10)

All that is necessary is that the five parameters , ,
, , and be selected so that (4.7) matches (4.10).

This leaves two degrees of freedom in selecting five pa-
rameters, and infinitely many more degrees of freedom for
selecting the distribution of and to match the selected
first two moments. This yields a rich class of randomly filtered
processes satisfying (4.10). Matching (4.7) with (4.10) yields

(4.11)
and there are two constraints
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Choose and as free variables to yield

(4.12)
with a constraint

E. Queue Responses

Although there are infinitely many degrees of freedom for
us to synthesize a fairly large class of processes, it turns
out (much to our surprise) that the mean queue length for
the filtered arrival processes with the special filter model
described above is completely determined by the input mean
and autocorrelation function in form of (4.10). To verify this,
note that according to (4.9), can be expressed in terms of

, and as

We can further show that is a function of the three
parameters of the autocorrelation function as follows. By (4.8),

can be rewritten as

Replace using the third equation of (4.11),

Therefore, the mean queue length is

Thus, all processes of the form described in Section IV-C with
the same autocorrelation function(4.10) give rise to the same
mean queue length.

One then is led to wonder whether this result is true for the
general class of randomly filtered arrival processes. It turns
out that in general is uniquely determined by the input
mean and autocorrelation function, because it can be shown
(see the Appendix) that

(4.13)

However, in general depends on a
particular chosen model of and does not appear to have a
direct relationship with a given input autocorrelation function.

Therefore, the queue responses to all possible randomly filtered
processes are perhaps not completely determined by a general
input mean and autocorrelation function, due to the variations
in .

F. On the Marginal Distributions of the Processes
of Section IV-C

We now briefly explore the one-dimensional marginal distri-
butions of the random processes under the conditions of
Section IV-C, in order to better assess the breadth of statistical
behavior within the model. First consider the case of short
range dependence, or very little low frequency power, by
taking . Then , and without loss of generality
we also take . The variables are then simply
any independent identically distributed valued random
variables with mean and variance . The fact that the
mean queue length depends on the distribution of the
only through their mean and variance in this case is thus
due to the surprising but well known Pollaczek–Khinchin type
formula (4.5), showing that the mean delay for a discrete time

system (with representing unit service times)
depends only on the mean and variance of the batch sizes.

At the other extreme, consider moderate to long-range
dependence (equivalently, large power at low frequencies)
by taking to be close to one. Then for fixed, is
the sum of a large number of independent integer random
variables, each equal to zero with high probability. We also
have . Thus, the distribution of is approximately
that of acompoundPoisson random variable. Recall that the
compound Poisson distribution with parameters is the
distribution of the sum of a random number of independent
random variables, such that the number of random variables
has the Poisson distribution of mean, and each of the random
variables in the sum has distribution function.

In fact, given any compound Poisson distribution on
with mean and variance and any with ,
there is an arrival process generated by random filtering, with
autocorrelation function (4.9) and marginal distribution equal
to the given compound Poisson distribution.

Indeed, let denote the parameters of the given
compound Poisson distribution. Then we use the model of
Section IV-C and take , let have the Poisson
distribution with mean , and let have distribution .
Then for , the number of messages initiated at time
which still can contribute packets at timehas the Poisson
distribution with mean . Summing over , we
see that the number of messages generating packets at time
has the Poisson distribution with mean, and the number
of packets contributed by each such message has distribution

. Thus, the process produced has marginal distribution
equal to the given compound Poisson distribution.

To summarize, we find that as increases from 0 to 1, the
set of possible marginal distributions shrinks from the set of all
distributions with mean and variance , down to the set of
all compound Poisson distributions with meanand variance

. Thus, for every , considerable variation in the marginal
distribution is possible. Therefore, the complete determination
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of mean queue length by power spectrum that we observe for
the processes of Section IV-C cannot be attributed to a lack of
diversity in the one-dimensional marginal distributions. Rather
we feel it is simply an extension of the invariance implicit in
the well-known Pollaczek–Khinchin formula for mean delay.

V. CONCLUSIONS

This paper explores the variations of the mean queue length
when different arrival processes with the same mean and
autocorrelation functions are applied to a queue. We
observed that for two-state MMP processes, the mean queue
length can vary quite substantially. Moderate variations in
mean queue length were observed for the PSMP processes.
Within the third class of processes explored, a subclass of
randomly filtered white noise processes, we found that the
mean queue length is completely determined by the input mean
and autocorrelation. Of course arrival processes in practice
can’t be guaranteed to fall within the third class, so we
conclude that the behavior of a queuecannot be predicted
solelybased on the mean and autocorrelation functions of its
arrival processes.

This conclusion is consistent with recent trends in the
literature. In particular, [3] demonstrated that the family of
circulant modulated Poisson processes is sufficiently rich to
match not only a given autocorrelation function in a large
class, but also to approximately match the first-order marginal
distribution of the input rate process. Tests run on data
generated by MMP processes with a very large number of
states, as well as real traffic sequences, showed that the
combination of autocorrelation and first order distribution is
quite effective. A similar conclusion was reported in [9], which
used a first order discrete autoregressive model to match both
the one-dimensional distribution and the one-frame correlation
of real teleconference traffic.

The processes for which we found it most difficult to predict
the queueing performance from the autocorrelation function
alone were also the ones with the greatest power in the low
frequency region. These are the two-state Markov processes
(with both rates allowed nonzero) of Section II in the case
that is near one. This is consistent with the observation of
[2], to the effect that input power in the low frequency band
is most essential to queueing analysis. If the input has a lot
of power at low frequencies, then modifications of the low
power components are sometimes possible for significantly
changing the queueing performance. These observations show
why, as is intuitively clear, the very long range dependence
observed in some real data [10] might prove problematical
in some situations, in spite of the successes reported in [3]
and [9]. A promising approach for dealing with very long
range dependence is to separate out the very slowly varying
component of the traffic, as suggested in [4].

Finally, we found the spectral information did well at
predicting the mean queue length for heavy traffic, which
perhaps is to be expected since heavy traffic is the realm of
diffusion approximations based on the central limit theorem.

In the remaining paragraphs of this paper, we discuss some
potential applications of spectral analysis of datastreams for

predicting queueing performance, and discuss the implications
of this paper. We described in the introduction the appeal of
using the power spectral density as an indication of the load
imposed by a datastream. Datastreams are modeled as random
sequences in this paper and the autocorrelation functions are
defined by statistical expectation. In practice, the autocorre-
lation function can be associated to a datastream in different
ways, depending on the context. For example, the associated
power spectral density could simply be based on the history
of datastreams of similar type. Or standard statistical spectral
estimation methods based on empirical correlations could be
applied to obtain the spectral estimates in real time.

An approach to provide quality of service guarantees for
variable bit rate (VBR) applications in the asynchronous
transfer mode (ATM) framework is mentioned in [4]. It was
suggested that if a datastream has a large low frequency
component, then the datastream should be allocated capacity
at or near its peak requirement. This recommendation seems
more prudent in light of our work. Not only does the presence
of large power at low frequencies mean a datastream could
have a large impact on the network performance, but it
also makes the impact less predictable. Some other potential
applications of analysis of queues via spectral methods are the
following, listed in order of decreasing time scales.

• Variable rate source coders, such as video compression or
compaction algorithms, should be designed to reduce the
impact of the resulting datastreams on the networks that
carry them. If a simple summary of such impact could be
computed it could lead to the development of improved
coders. The power spectrum of the coder output might be
suggested as an appropriate measure.

• An approach for provisioning buffer sizes and transmis-
sion capacity in networks is to define a number of classes
of traffic, each with an associated power spectrum (or
bounds on the power spectra). We could then hope to
predict the delay or loss probabilities based on the spectral
information.

• A promising notion for quality of service guarantees
and/or pricing for VBR traffic is that a contract be
negotiated between the user and the network. Each could
check for compliance. It was suggested in [1] that the
contract involve the specification of the input power
spectral density, or bounds on such. This is appealing
since the power spectrum is easy to measure and gives a
reasonable indication of network performance.

• In case of large propagation or measurement delay, effec-
tive rate control of available bit rate (ABR) datastreams in
the ATM framework could make use of future predictions
about the ABR queue length or delay. Such predictions
could be based on predictions of the spectrum of load
and excess capacity processes, obtained by statistical
extrapolation methods (some of which are also based
on spectral analysis of datastreams). Here the overall
idea is to use prediction to enhance feedback control.
In this application, estimates are not needed on a time
scale longer than the reaction time of the rate adjustment
algorithm.
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The above applications are promising and deserve further
consideration. At the same time, our results and the related
results of [3] and [5] suggest that the power spectra alone is
probably not adequate for such purposes in case the datas-
treams have a large component of power at low frequencies.
In such cases, additional statistical information, such as the
one-dimensional marginal distributions of datastreams, should
be used.

APPENDIX

A. Demonstration that Autocorrelation Function
Determines the Mean

If is a wide sense stationary nonnegative random process,
then the variance of theth sample average satisfies

If, in addition, said variance tends to zero as
(which means that the zero frequency component ofis
deterministic) then the mean of, , is determined from

as follows:

B. Derivation of (4.3)

Since

we have

Therefore,

C. Derivation of (4.13)
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