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On Variations of Queue Response for Inputs with
the Same Mean and Autocorrelation Function

Bruce Hajek,Fellow, IEEE and Linhai He

Abstract—This paper explores the variations in mean queue tics: 1) input power spectrum; 2) input bispectrum; 3) input
length for stationary arrival processes with the same mean and trispectrum; and 4) one-dimensional marginal distribution, the
autocorrelation functions, or equivalently, the same mean and input power spectrum is most essential to queueing analysis.

power spectrum. Three types of processes, namely, two-state . S . . .
Markov-modulated Poisson processes, periodic-sequence modu-CIear evidence is given in [1]-[3] that input power in the

lated Poisson processes and processes generated by randomiow frequency band has a dominant impact on queueing
filtering a white noise process, are investigated. Results show performance, whereas high-frequency power to a large extent

that the mean queue length can vary substantially for the first can be neglected. Moreover, spectral characterization is an

type of process, and can vary moderately for the second type of e qling tool for traffic modeling, because rich theories
process, as the parameters of the processes are varied, subjecP d hni lable f h I . . f
to a specified mean and autocorrelation function. However, the @nd techniques are available for the spectral estimation o

mean queue lengths for the third type of arrival processes are Stochastic processes, and spectral measurements are fairly easy
determined by the input mean and autocorrelation functions. The to obtain. In addition, many traffic streams, such as video

results suggest that queueing performance can be hard to predict traffic with an underlying frame structure, exhibit nontrivial
from spectral data alone when the power in low frequencies is spectral structure.

large. . . . . .
The aim of this paper is to study in a clear and simple con-
Index Terms—Multiplexing delay, queueing, spectral analysis.  text the extent to which the mean and autocorrelation functions
of an arrival process determine the mean length of a queue
I. INTRODUCTION with a single, deterministic server (i.e/D/1 type server).

: Given the promise of spectral methods for queuing analysis,
;ﬁfFLljcés?i-glr?IiEsAr'l\gfvigncr?:rgtzerirzceotrr?grlﬁﬁSa?vig 'Thp;c:rﬁiéactitioners would want to have rough guidelines about how

q . y well spectral data alone predicts queueing performance. They
easy to measure, and easy to relate to queueing performance.

] ould also want to understand the extent to which spectral
An approach, widely used through the years, has been . W " X whl P

7. - Sta specifies the statistics of a data sequence. Finally, they
measure some statistics of a traffic stream, match the stream o -
- . would want guidelines as to when spectral data is likely to
to a statistical model, and then base performance analysis an : - . .
. . o 2=~ heéd augmentation. Our findings regarding these issues are
considerations, such as admission control and buffer sizing, on . : ' .
summarized in the final section.

the selected model. For example, the interarrival distribution he work [1], [2] focused mainly on the impact of input
might be estimated, the arrival process modeled as a renewaT ’ y P P

process, and classical queueing theory used to derive bouRge <" spectralvariation, especially in the low frequency

and approximations on queue lengths. Another characterigig o O" the queueing performance. In contrast, this paper

that can be used is the mean and autocorrelation functi@ﬁmly studies the impact of other input variations on the

of the arrival process; that is the focus of this paper. sind'eueng performance for giveninput power spectrum. Re-

. . c%nt related work [5] indicates that use of the one-dimensional
the processes we consider are assumed to be stationary, the

autocorrelation function has the same information as the powné rginal d|str|but!op of thg rate, can bE? gsed n conjunction
spectrum. with spectral statistics, to improve predictions in the case of

Use of the spectrum of an arrival processes to help predPé cesses _W'th large power in the low frequency range.
gueue performance was extensively explored in [1]—-[3]. Th[e hree different types of randqm processes are explored.
study [2] provides clear evidence that of four input statiS-W(.)_St.ate Markov modulated P0|§son (MMP) processes and
periodic-sequence modulated Poisson (PSMP) processes are
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Il. QUEUE RESPONSES FORTWO-STATE MMP PROCESSES 120

MMP processes, in which the modulating Markov process 1001
has two states, are the arrival processes investigated in this ol
section. First such processes are described, and then the,),1 i
variation in queue response is explored.

40

A. Source Model 20}
A discrete time MMP procesa = (A;) can be described e
as follows. There is a stationary discrete time Markov process Yo

© = (©), and for each possible stateof © there is
a specified mean number of arrivalg. The rate process
M = (M) for A is defined byM;, = ve,. Given M, the
variables A; are conditionally independent Poisson randoman synthesize infinitely many different arrival processes with
variables withE[A;|M] = My. In this section the Markov the one extra degree of freedom.

process© is taken to have state8 and 1, with one-step  Use (2.1) and match (2.2) and (2.3) to obtain a set of three

ig. 1. 71 versusyp, giveny = 0.8, ¥» = 1, andA = 0.25.

transition probability matrixP written as equations:
P:[l_a o } avi+ P _ _
poo1-p atp
The associated input rate vector is denotedybst [vo, v1]- at+pf=1-A (2.5)
In this two-state case, the rate procédsitself is Markov. g 10— 2 B
The mean and autocorrelation functions of the rate process af a+ =1
M are given by
with four constraints:
¥= +my = Yot ——m  (21)
Y =To%o = :
atf " atf 0Sa<l, 0<A<1, 7%=0 720 (2.6)
1 1
Ry(n) = E[MoM,] =) Z’Ympilflm Choosev, as the free variable and solve the above equations
i=0j=0 to yield
2
-2 Y1 — Yo |n| 4
o] +a[3< ) l—a-p (2.2) b _
+ ( ) == ¥ +7
Y~ %o
where [, 71] is the steady-state probability distribution for (1—NF =)
P. Since Ry;(0) = var(My) + 72, Ry, can be expressed as = T (2.7)
where is the variance ofif;, and X is the smaller eigenvalue ) ne
of Pie,A=1—-—a—p3. with constraints
It is easy to show thaE[A;] = F[M], and the autocorre- <% for A > 0
lation function of the arrival proces4 is related to that of\/ Yo %z/ - 2.8)
by R4(n) = Ry(n) + 78,whered,, denotes ~_J¥ < - < :
. 5 _)\_’yo<fy, for A <0
5 — 1, ifn=0 (2.4)
"7 0, else. ' assumingy, < ¥ < ~1. According to these equationsg, can

. . . tgke any value irf0, 7). As +y converges tay, increases
The termé,, accounts for the wide-sense white noise mduce[a y 0, ) 70 9 o7, 71

by th dulati i In the f d in th ward co, o decreases t0 while 3 approached — A. This
y he modulation operation. in the lrequency domain, thig,, ¢ oy vastly different two arrival processes can be while

additional term inf2,, simply corresponds to adding a ConStarﬁaving the same mean and autocorrelation functions. Figs. 1
term=~ to the power spectrum aff. Therefore,Rs and Ry, and 2 show howy:, a, and 3 vary asv, ranges ovefo, 7),

are nearly equivalent. For convenience, we spegify instead givens = 0.8, ¢ = 1, and A = 0.25,

of Ry in this section. Note that if we restrict attention to two-state “on-off”
_ _ i sources by fixingy, = 0, then the model is completely

B. Matching Input Autocorrelation Functions determined by the autocorrelation function. In the general case

By (2.3), the mean and autocorrelation function of a twasne could decompose the arrival process as the sum of an
state MMP process is completely characterized by three ma—off process with rateésand-~; — o, and a Poisson process
rameters, », and A\. However, one needs four parametersyith fixed rate~,. The variation of the average queue length
«, 3, v0, and~y, to specify such a process. Therefore, for angs investigated in the next section is solely due to variations
given autocorrelation function in the general form of (2.3), onia ~,, the fixed rate portion of the total arrival process.
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Fig. 2. « andj versusyg, giveny = 0.8, ¢» = 1, andA = 0.25.

0.9

Fig. 5.
Fig. 3. Mean queue length versys, giveny = 0.25, ¢» = 0.0625, and g

A =09

C. Queue Responses 25 N
Consider a discrete timgD /1 queue with unit service time, 2] L . \\\\3§‘\§>§§\
i i i ' Jo : R
with the two-state MMP arrival procesd described above. L SRR
. . . SN IR
The mean queue lengtB[q¢] is readily calculated, since the 10 X “%gg,g‘ S
queue is anV//G/1 phase type process [6], [7]. The equations
we used can be found in [8] and are omitted here. Rather, some

numerical results will be described.

Fig. 3 shows the variation of mean queue length as a
function of vy. As seen from the ploty, plays an important
role in the queue response. Whenis small (within the range
of [0,0.1]), the variation of the mean queue lengiq] is
also relatively small. However, ag increases toward, E[g] thatE[q] ranges from 0.81 to 3.2, ag varies. This is a factor
increases quickly to reach the maximum. To quantitativel§f four difference in mean queue length for the same mean and
describe the variation oE[q], define autocorrelation of the input, but we might terBiq] as being

. moderate throughout this range. For a giverFig. 5 indicates
o7, ¥, A) 2 Hmax (E[q_]) — min (E]g]) thaté is large for moderate values gfand A close to unity. In
min (Efg]) this case, both the relative and absolute variatiodpf| for
, Where the min and max are taken with respeeftorhe data a fixed mean and autocorrelation function of the input can be
for Fig. 3 yield §(0.25, 0.0625, 0.9) = 6.11. While elsewhere significant. To illustrate the variation of queue response under
in this paper we focus on the mean queue length, we nate extreme case, Fig. 7 shows the mean queue length with
for this example that the second moment and variance of thie= 0.2, ¢ = 0.1, and A = 0.998, which leads ta&® = 268.39.
gueue length exhibit a very large variation, since they both The largest relative differences in mean queue lengths (i.e.,
tend to infinity asvyy " 7. largest values of5) are observed forx near one. This is

In order to examine the maximum possible variation of thiie case that there is the most power in low frequencies, or
mean queue length, we plét7, , A\) for fixed A in Fig. 4, equivalently, the longest range statistical correlations.
and for fixed in Fig. 5. Fig. 4 indicates thdtis large inthe ~ Note in Figs. 4 and 5 that for heavy loads (i.g.,near
region where both) and¥ are small. However, in this regionone), the variation is not large. An explanation for this is that
E[q] is small, so that the large values&fin which differences in heavy traffic the arrival process is averaged over long time
are normalized by mi[g]) might not be significant in appli- periods by the queue. Therefore, the central limit theorem (i.e.,
cations. To focus on the variation more fully, consider Fig. @liffusion approximation) holds, so that the response is mainly
which shows both the maximum and minimum values#§] determined by the mean and autocorrelation function of the
for A fixed. For example, foff = 0.4 and+ = 0.2, we find arrival process.

Fig. 6. minE[q]) and maxE[q]), as a function ofy and, for A = 0.9.
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Fig. 8. State transition diagram of a ring-type periodic Markov chain.
Fig. 7. Mean queue length versyg in an extreme casé: = 0.2, ¢» = 0.1,
and A = 0.998.

Therefore, the mean al/ equals the arithmetic average of
the finite sequenc#, and the autocorrelation dff equals the
Ill. QUEUE RESPONSES FORPSMP FROCESSES periodic autocorrelation function of.
In this section, we first describe the model for a PSMP The power spectrum a#/, which is defined ag/N times
process and give its mean, autocorrelation function and powee discrete Fourier transform (DFT) of one period #f;,
spectrum. Then we show how to synthesize different PSMfan be found as

processes with the same mean and autocorrelation functions N1
through phase manipulation, and examine the resulting varia- P, = 1 Z Ry (n)e=i@kn/N)
tion of the queue responses. N =0
The paper [1] examined a different approach for generating ] Nein-t
PSMP processes with the same mean and autocorrelation =z Z Z YiV(itn) mod eI @rkn/N)
function. The rate process was taken to be the sum of two n=0 i=0
sinusoidal inputs, and variations of the phases of the two inputs =|%/N|? (3.3)

were explored. It was found that the effect of changing the . . i )
phases is negligible unless the frequencies of the two sign§id€re? is the DFT ofy. The power spectrum is normalized
are harmonically related, in which case the mean queue lengththat the sum of thé, is Ry, (0), the total power. _
varied by up to 25% as the phases varied. Larger variationgS Noted in the previous section, the mean of the arrival

are found for the phase perturbation method explored in tHfECeSSA equalsE[My] =7, and its autocorrelation function
section. R, is given by R4(n) = Ry (n) +76,. For convenience,

as in the previous section, we focus @), instead of R 4
in this section.
A. Source Model
A discrete-time PSMP procesd = (Aj) is a doubly B. Matching Input Power Spectra
stochastic process modulated by a rate proddss= (My).
Given M, the variablesA; are conditionally independent
Poisson random variables withi[A;|M] = M;,. The process
M itself is a random periodic sequence with periggddefined

By (3.3), the power spectrum of the rate procédds is
completely specified by the magnitude‘fTherefore, we can
synthesize a given input power spectrum by two different rate
processes, constructed from two finite sequences which have

as DFT’s with the same magnitude but different phase spectra.
Consider a special case gfdefined as
My = M4 mod N
F¥=la, b b, -, 0b]

for some finite sequenc& = [vo, 71, -+, yn_1] and a T
random variable uniformly distributed on{0, 1, ---, N — .
1. Its DFT is

A PSMP process is also a MMP process as described = ki)
in Section Il, since the rate procedd can be written as e = Z me™
M = ~e,, where®,, is a Markov process with the ring-type =0
deterministic transitions illustrated in Fig. 8. — { at+(N-1Db=N7, k=0

The mean and autocorrelation functions of the rate process a—b, else.
M are given by AssumingN > 3, we change the phasesf, and4x;_,. by

Nt an amouny for a single indexmn with 1 < m < [(N —-1)/2].

1 A The resulting perturbation of, denoted byy™:?, is
B = Blssmoan] = 3 30 % 27 (3.1) op o v
k=0 N77 ) k=0
| V-1 e (a—b)e®,  k=m
Ry(n) = ElyaYn+Qmod N] = N Z YiV(i+n) mod N+ (3.2) » (a=b)e®, k=N-m

i=0 a—b, else.
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Fig. 9. Mean queue length as a functionffwith N = 150, ¥ = 0.85, Fig. 10. ¢ as a function ofn, with V =150, 7 = 0.9, andb = 0.87.
m = 1, andb = 0.87.

Taking the inverse DFT ofy™?¢ we have a new finite
sequence denoted By ¢ = [y7"¢ ... 40 1]
N—1 s I
1 . AT
m, 8 ~m, 8 : Y o8k
o 5 :N Z A s ej(27rkz/]\)
k=0
4(a — b) 2rmi 6 0 oal
=y — sin — } sin| = 34
ryz N < N + 2) <2> ( ) -2 50 100 150 2(‘70 250 300
. . 8 . . N
fori=0,1,---, N —1. Fory™¢ to be a valid arrival rate _ o B
sequencey;"’ ? has to be nonnegative for= 0, 1, -+, N—1. Fig. 11. ¢ as a function ofV, with ¥ = 0.9, m = 1, andb = 0.87.

A sufficient condition oz andb, allowing us to varym and

6 over the full rangel < m < [(N —1)/2] and—7 < 6 < =, is because asn increases, we are modifying the phase of
is that @ — |4(a — b)/N| > 0 (implying ~7=® > 0) and @ higher frequency component &t so the effect OnE|q]

b— |4(a — b)/N| > 0 (implying 4% > 0 for i # 0). becomes lessimportant. This is why, although we could vary

Equivalently, it suffices that m and§ arbitrarily, we restrict attention in what follows to the
casem = 1. We examine how each of the three parameters,
da_ b < (N +4)a N, 7, andb, may affects. Note that the input power spectrum
N+4— — 4 also changes a#/, v or b varies.

Fig. 11 showss as a function ofN with ¥ = 0.9, m = 1,
and b = 0.85. A fluid-limit analysis can be used to show
N(N +4) _ that 6 converges asN — oo, and the limit is roughly
<b< m - (3.5 25, representing a 3.5-fold difference between minimum and
maximum mean queue sizes. (The rate of convergence is slow.)
In summary, ify, b, and N satisfy condition (3.5), then for Note that the DC power in the arrival processhs = 72,
anym and# as abovey™ ¢ is a nonnegative sequence withwhereas for largeV the power at other frequencies is given
~do = %’"’0 and [5| = [4™¢]. The synthesized PSMP procesdy P, ~ 0.0472 for 1 < k < N — 1. Thus, the ratio of power
thus has the same mean and power spectrum fonahdf. at the DC level to total power tends to zero Astends to
infinity. Basically, for largeN, there is a large (order a¥)
C. Queue Responses burst of arrivals once every time slots, causing a nearly

Consider a discrete tim¢D /1 queue with unit service time, flat power distribution. The variations @f do not effect the
with a PSMP arrival process as described. We again used BoWer spectrum, but effect the phase of the lowest nonzero
theory of phase-typ@/ /G/1 processes [6]-[8] to evaluate theT€UeNCy component of the process.

mean queue lengttE[g] with the mean and autocorrelation Fi9: 12 showss as a functif)n ofy with N = 150, m = 1,
functions of the arrival process fixed. andb = 0.8y. Fory < 0.85, é increases ag increases,

Fig. 9 shows the mean queue length as a functiohwith @S €xpected. Howeves, decreases for larger values of
N =150, m = 1, 5 = 0.85, andb = 0.85. To quantitatively An explanat|_0n for this is that the dl_ffusmn_ approximation
describe the variation aE[q], define becomes valid under heavy Ipad cpndltlons (W_ecjose to 1),.

so that the queue response is mainly determined by the input
max(E[q]) — min(E[q]) mean and autocorrelation functions.
§(N, m, ¥, b) = 4 : 4 . Fig. 13 showsé as a function ofb with N = 150,

meln(E[Q]) ¥ = 0.9, andm = 1. By (3.5), the allowable range df

is [0.8¥, 1.00027]. It shows thaté drops from its maximum,
The data for Fig. 9 yieldé(150, 1, 0.85, 0.68) = 1.093. which is achieved ai = 0.8%, to zero ag approacheg. This
Fig. 10 showss as a function ofn with N = 150, % = 0.9, is because ifh = 7, then¥, = 0 unlessk = 0, so that no
andb = 0.8%, in which é drops sharply as: increases. This phase change is possible.

or in terms of% and b,

[ QSN
=2

L
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. at time n is given by

n X

’ An: Z th,u,nfk- (41)

7 k=—o00 u=1

It is assumed that the one-dimensional procedses =
(hi,u,j: § € Z1) indexed byk and » are independent
: of each other and identically distributed. For brevity, be-
low we write E[h;] for E[hg, ., ;] and cov(h;, hpq;) for
cov(hr, u, i, hr,w,nt;) (SiNCe these quantities do not depend
on k or u) and cov(h,, j, hy n) fOr cov(he, i, Pr, v n)
(which does not depend ok). An additional assumption is

placed on(h;) below in order to make analysis of the queue
T 1 tractable.
< R, The mean and autocorrelation functions4f can easily be
§ osf ] found to be as follows.
] —_—
D ] EA=E| > > hk,u,n_k]
k=—ocu=1

872 o%s o7e o078 o.8 082 0.84 088 0.88 0.9 .82

n
=F[X Elhy, _k
Fig. 13. ¢ as a function ob with N = 150,75 = 0.9, andm = 1. [ ] Z [ ak ]

k=—oc0
=E[X])_ ERy), 4.2)
X, A, =0
Ra(n) = i {Val‘(X)E[hj]E[hn+j] + E[X]cov(h;, hn+j)}
Filter =0 2
| bin) + E[X)? i Elhj] (4.3)
Tnput white noise process Output filtered process =0

Fig. 14. Model for the generation of a randomly filtered arrival process. for n. > 0. A derivation of (4.3) is given in the Appendix.

IV. QUEUE RESPONSES FORPROCESSES
GENERATED BY RANDOM FILTERING B. Queueing Analysis

In this section, arrival processes generated by random filter-Consider a discrete timg /1 queue with unit service time,
ing are described and corresponding expressions for the m@éih the randomly filtered arrival procegsi,). Denote this
length of an/D/1 are given. Finally, the relationship betweerflueue by queue 1 and its mean queue lengttivpy

input autocorrelation function and the mean queue length isTo deriveN;, we first construct another queue called queue
examined for a subclass of the processes. 2 with exactly the same sequence of message initiations and

same total humber of packets associated with each message,
A. Source Model but with the.modlﬂcatlon thgt all packets assc_)m_at.e_d with a
. message arrive at the same time the message is initiated. Thus
A randomly filtered processi = (Ax) can be generatedy;  the number of the packets to arrive at tirhdfor queue
by passing a white noise process= (.X;) through a filter 2 is given by
with random coefficients. The coordinates of bdthand the

filter take values inZ,.. Fig. 14 shows the basic model for the X oo
generation of a randomly filtered process. For the purposes YVie=3 > hiu
of exposition, we think of there beind; messageitiated u=1 j=0

at time k&, such that each message stimulates a sqtacket

arrivals, according to the random filter. _Let N> denote th_e mean queue length of queue 2. Further
The filter is denoted byhy, .. ;: k, u € Z, j € Z4), where impose the following constraint off;):

hi ;1S the number of packets generated at tine- j by

the uth message (if any) arriving at time Therefore iy, ., k

can be viewed as a random impulse response function seen Pr|¥ hj>k+1, for I<E<L| =1  (44)

by the uth message. Hence, the number of packets to arrive j=0
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where L = max{j:h; # 0} is the random length of the and by (4.2), the autocorrelation function can be found as
impulse function. Condition (4.4) ensures that whenever the

service begins on a message in queue 1, the server is not . [ E[X]E[V?]

idle until all packets of the message have been served. Thiga(n) =(1 — a) {T

implies that the departure processes of queue 1 and queue 2 E[V]X(E[X?] — E[X]? - E[X])
are exactly the same. Therefof®; = No — Na, whereNa + 1~ (1—a) }
is the average number of packets which have arrived at queue y

2 but which have yet to arrive at queue 1. At any tifnéhe n <E[X]E[V]> 4.7
number of such packets is « ' '

Xk i The mean and second moment of the corresponding batch

Z Z Z hie,w, g arrival processyy, is

k=—oco u=l j=l+1—k

and its mean is E[Y] = E[X]E[V]

. = E[4]
Na = E[X] f:jE[hj]. EY?] = <@) E[X?
1 gy BBV - BVE

Since queue 2 is a discrete tiM@,....,/D/1 queue, its mean o?
queue lengthlV, is given by
The mean number of arrivals at queue 2 yet to arrive at queue 1

_ EY?]- E[Y] is
M =S o) .
where Na = BIX]YjBl] = BBV, (49)
X oo 00
nE[Y]|=E [ZZhw] = E[X]Y_ E[h;] Therefore, the mean queue lengih is
u=1 j=0 §=0
2 E[Y?]-ElY] 1-«
r Ny =Ny — Np = — EIX|E|V].
© u=1j=0 ’

Given anym > 0, ¢ > 0, and0 < A < 1, (4.7) shows
that there are processes obtained by random filtering using
. the special model of filter above, which have a specified
C. A Special Model autocorrelation function of the form

Due to the complexity of (4.3), we consider a special model
of the filter, with impulse function defined as Ra(n) = m? 4+ A", (4.10)

=E[X*E [i hj] + E[X]var(i h;

D. Matching Input Autocorrelation Functions
. (4.6)
j=0

hy =Vlirg<,
’ {0=s=t} All that is necessary is that the five paramet&fs(], E[X?],

where V is a positive integer-valued random variable witd2[V], E[V?], and« be selected so that (4.7) matches (4.10).
meanE[V] and second momer£[V?], L is a geometrically This leaves two degrees of freedom in selecting five pa-
distributed random variable with parameter i.e., Pr[[ = rameters, and infinitely many more degrees of freedom for
] = a(l — )=t forl > 1, andV and L are mutually selecting the distribution off and V' to match the selected

independent_ Hence, the mean and covariance functi@h]jof first two moments. This y|8|dS arich class of randomly filtered

are, respectively processes satisfying (4.10). Matching (4.7) with (4.10) yields
: E[X]|E[V]
Elh;] =E[V] Pt[L > j] = E[V](1 — ), -, m
cov(hj, hnyj) = E[VZ](1 — )" ™ — E[V]*(1 — )", T—a=2A\
2 2 21 2
Then by (4.2), EXIEV) | BVPEL] - f[ff)]fz BX) _,
00 (4.11)
E[A] = E[X]E[V] 2(1 _ a)j — M7 and there are two constraints

=0 E[X? > E[X]*, E[V>EV].
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ChooseE[X] and E[X?] as free variables to yield Therefore, the queue responses to all possible randomly filtered
a=1-—\ processes are perhaps not completely determined by a general
E[V] = am_ ?nput mean and autocorrelation function, due to the variations

ElX] in Na.
e = AN o (BIXY) - BIYT - B[X)
L[X] (1+ ME[X]?

(4.12) F. On the Marginal Distributions of the Processes
' of Section IV-C

We now briefly explore the one-dimensional marginal distri-

with a constraint
(1+ VE[X]y

2 2
EXT < (1— Am? + E[X]" - AE[X]. butions of the random processgs;) under the conditions of
Section IV-C, in order to better assess the breadth of statistical
E. Queue Responses behavior within the model. First consider the case of short

Although there are infinitely many degrees of freedom fc{f?i%(; Sefegd?r?](:{ aor—V(larya:(tjtl3vi|t(r)1\é)vutfrﬁ>qsusegfyggr?:rlgﬁ:[yby

us to synthesize a fairly large class of processes, it turts o . )
out (much to our surprise) that the mean queue length f8F a}lr?getil:%}e‘m:i déﬁtlgﬁ Vg:ﬁﬁﬁiﬁg a\r/;ljzgnr;n;g%
the filtered arrival processes with the special filter mod&f"Y pet y dis T
. . . . variables with meann and variancey. The fact that the
described above is completely determined by the input mean C
: L . ._mean queue length depends on the distribution of she
and autocorrelation function in form of (4.10). To verify this, nlv throuah their mean and variance in this case is thus
note that according to (4.9)y; can be expressed in terms oY ug €l varl ! IS case | u
m, %, \, and E[Y?] as due to the surprising but well known Pollaczek—Khinchin type
Ty formula (4.5), showing that the mean delay for a discrete time
E[Y?]-m Am Myater,/D /1 system (withD representing unit service times)
Ny = 2 - . . i
—m) 1—X depends only on the mean and variance of the batch sizes.
oy . At the other extreme, consider moderate to long-range
We can further show that[Y"] is a function of the three yonengence (equivalently, large power at low frequencies)
parameters of the autocorrelation function as follows. By (4.8[3y taking A to be close to one. Then for fixed, A, is
2 . . L T
E[Y?] can be rewritten as the sum of a large number of independent integer random
E[V2(E[X?] - E[X)) variables, each equal to zero with high probability. We also
o2 haveE[A4,] < 1. Thus, the distribution ofi,, is approximately
) ) ) ) that of acompoundPoisson random variable. Recall that the
Replace£[X~] — E[X] using the third equation of (4.11), " compound Poisson distribution with parametgis B) is the
o, 1—(1—a)? E[X]|E[V?] distribution of the sum of a random number of independent
EY7] = 2 Y= random variables, such that the number of random variables
has the Poisson distribution of meapand each of the random
variables in the sum has distribution functiéh

E[Y? =

+ 2;20‘ E[X]E[V2].

«

. <E[X]E[v]>2 L= a)E[QX]E[VQ]

o o In fact, given any compound Poisson distribution Zn
1= A 2 with meanm and variance)y and any A with 0 < A < 1,
= —=Y+m-. ; i o .
(1-X)? there is an arrival process generated by random filtering, with
. autocorrelation function (4.9) and marginal distribution equal
Therefore, the mean queue lengh is to the given compound Poisson distribution.
1+)\¢+m2 o Indeed, let(n, B) denote the parameters of the given
N, = 1-A _Am ) compound Poisson distribution. Then we use the model of
2(1 —m) 1-A Section IV-C and taker = 1 — A, let X have the Poisson

Thus, all processes of the form described in Section IV-C Wﬁfﬂ?t“b?t'oh <W'th rrr:eanu/cg, an? letV have_d_lstnb(ljmon_B.
the same autocorrelation functiq@d.10) give rise to the same T en or_k < n, the number oF messages Initiate at_tw!ne
mean queue length. which still can contribute packets at time has the Poisson

. . . . n_k .
One then is led to wonder whether this result is true for tﬁgstrll;utlorr: with rrtljear(/;/a)(l —a)"~". Summing O\Lek' we
general class of randomly filtered arrival processes. It wriigS that the number of messages generating packets at time

out that in generalVs is uniquely determined by the inputhas the Poisson distribution with mean and the number

mean and autocorrelation function, because it can be sho@jrPackets contributed by each such message has distribution
(see the Appendix) that B. Thus, the process4,,) produced has marginal distribution

equal to the given compound Poisson distribution.
= To summarize, we find that asincreases from 0 to 1, the
ElY?] = Z cov(do, An). (4.13) set of possible marginal distributions shrinks from the set of all
e distributions with meann and variance), down to the set of
However, No = E;’il JE[h,] in general depends on aall compound Poisson distributions with meanand variance
particular chosen model df; and does not appear to have a. Thus, for everyA, considerable variation in the marginal
direct relationship with a given input autocorrelation functiordistribution is possible. Therefore, the complete determination
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of mean queue length by power spectrum that we observe foedicting queueing performance, and discuss the implications
the processes of Section IV-C cannot be attributed to a lackaffthis paper. We described in the introduction the appeal of
diversity in the one-dimensional marginal distributions. Rathessing the power spectral density as an indication of the load
we feel it is simply an extension of the invariance implicit inmposed by a datastream. Datastreams are modeled as random
the well-known Pollaczek—Khinchin formula for mean delaysequences in this paper and the autocorrelation functions are
defined by statistical expectation. In practice, the autocorre-
lation function can be associated to a datastream in different
V. CONCLUSIONS ways, depending on the context. For example, the associated
This paper explores the variations of the mean queue lengibwer spectral density could simply be based on the history
when different arrival processes with the same mean aofidatastreams of similar type. Or standard statistical spectral
autocorrelation functions are applied to-&)/1 queue. We estimation methods based on empirical correlations could be
observed that for two-state MMP processes, the mean quepplied to obtain the spectral estimates in real time.
length can vary quite substantially. Moderate variations in An approach to provide quality of service guarantees for
mean queue length were observed for the PSMP processesiable bit rate (VBR) applications in the asynchronous
Within the third class of processes explored, a subclass tednsfer mode (ATM) framework is mentioned in [4]. It was
randomly filtered white noise processes, we found that teeggested that if a datastream has a large low frequency
mean queue length is completely determined by the input megsimponent, then the datastream should be allocated capacity
and autocorrelation. Of course arrival processes in practigeor near its peak requirement. This recommendation seems
can't be guaranteed to fall within the third class, so Wgore prudent in light of our work. Not only does the presence
conclude that the behavior of a quenannotbe predicted of large power at low frequencies mean a datastream could
solelybased on the mean and autocorrelation functions of §gve a large impact on the network performance, but it
arrival processes. also makes the impact less predictable. Some other potential
This conclusion is consistent with recent trends in thenplications of analysis of queues via spectral methods are the
Ii'Ferature. In particular, _[3] demonstrateq that _th_e famil_y 9bllowing, listed in order of decreasing time scales.
circulant modulated Poisson processes is sufficiently rich to, Variable rate source coders, such as video compression or

::T:;(;h bt?taﬁsr(‘)lﬁoaag'\ggin?;:gfo:::itéot?lgl#;g'g? d(lenr ria:?ri%ixl compaction algorithms, should be designed to reduce the
' P y 9 impact of the resulting datastreams on the networks that

distribution of the input rate process. Tests run on data . )
enerated by MMP processes with a very large number of carry them. If a simple summary of such impact could be
9 computed it could lead to the development of improved

states, as well as real traffic sequences, showed that the :
S : . SN coders. The power spectrum of the coder output might be
combination of autocorrelation and first order distribution is .
suggested as an appropriate measure.

quite effective. A similar conclusion was reported in [9], which « An aooroach for provisioning buffer sizes and transmis-

used a first order discrete autoregressive model to match both pp ity pt ks | ,? defi ber of cl

the one-dimensional distribution and the one-frame correlation S'0™ capacity in NEWOrks 1S 1o delineé a number of classes
of traffic, each with an associated power spectrum (or

of real teleconference traffic. bound " Wi d then h
The processes for which we found it most difficult to predict ounds on the power spectra).“ e could then hope to
predict the delay or loss probabilities based on the spectral

the queueing performance from the autocorrelation function ! )
alone were also the ones with the greatest power in the low Information. _ _ ,
frequency region. These are the two-state Markov processe$ A promising notion for quall_ty _of service guarantees
(with both rates allowed nonzero) of Section Il in the case and/or pricing for VBR traffic is that a contract be
that A is near one. This is consistent with the observation of Negotiated between the user and the network. Each could
[2], to the effect that input power in the low frequency band ~ check for compliance. It was suggested in [1] that the
is most essential to queueing analysis. If the input has a lot contract involve the specification of the input power
of power at low frequencies, then modifications of the low  SPectral density, or bounds on such. This is appealing
power components are sometimes possible for significantly Since the power spectrum is easy to measure and gives a
changing the queueing performance. These observations show reasonable indication of network performance.
why, as is intuitively clear, the very long range dependence® In case of large propagation or measurement delay, effec-
observed in some real data [10] might prove problematical tive rate control of available bit rate (ABR) datastreams in
in some situations, in spite of the successes reported in [3] the ATM framework could make use of future predictions
and [9]. A promising approach for dealing with very long  about the ABR queue length or delay. Such predictions
range dependence is to separate out the very slowly varying could be based on predictions of the spectrum of load
component of the traffic, as suggested in [4]. and excess capacity processes, obtained by statistical
Finally, we found the spectral information did well at  extrapolation methods (some of which are also based
predicting the mean queue length for heavy traffic, which on spectral analysis of datastreams). Here the overall
perhaps is to be expected since heavy traffic is the realm of idea is to use prediction to enhance feedback control.
diffusion approximations based on the central limit theorem. In this application, estimates are not needed on a time
In the remaining paragraphs of this paper, we discuss some scale longer than the reaction time of the rate adjustment
potential applications of spectral analysis of datastreams for algorithm.
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The above applications are promising and deserve furthee have
consideration. At the same time, our results and the related / x,
results of [3] and [5] suggest that the power spectra alones, Z P iy Z ot
probably not adequate for such purposes in case the datas-\ ;=1
treams have a large component of power at low frequencies.

. . X; X;
In such cases, additional statistical information, such as the - - B ~ -
one-dimensional marginal distributions of datastreams, should ™ Zh“ J Z fo. Zh“ J Zh” ety
be used.
= E[X?|E[hj]E[hny;] + E[X]cov(hj, hnj)
2 . .
APPENDIX — E[X]"E[h;]E[hnq]
= var(X)E[h;] Elhny ] + E[X]cov(hy, hng).
A. Demonstration that Autocorrelation Function Therefore,
Determines the Mean R(n) =C0v(A0, Ay) + E[Ao] E[A,]
If X is a wide sense stationary nonnegative random process,
then the variance of theth sample average satisfies = Z [vmr E[h;|Elhptj;] + E[X] cov(hy, hnﬂ»)}
n—1 2
2 1 1 + E[X]? iE[h']
| =0 _t _ ‘ J
var| —-— | =~ l; <1 n)cov(Xo, X). =
72| <n

C. Derivation of (4.13)

If, in addition, said variance tends to zero as — oo
(which means that the zero frequency componentXofis
deterministic) then the mean &f, E[X;], is determined from > cov(do, Ay)
Ry as follows: nETee

oo

2 = cov(Ag, Ag) +2 Z cov(Ag, A,)

Z Xz n=1

E[X]° = nh_I)r;o E 7231 = Z {var(X)(E[hj])2 + E[X] var(hj)}

+2 ZZ{V&I“( ) [h ]E[ n+1]

E[X]cov(h;, hn+j)}
B. Derivation of (4.3)

= 3™ L var(X)(E[hj])? + E[X] cov(hy, hy)

0 J

cov(Ao, A Z Z COV<Z Pk, —kes Zhl v n_1> -

I
<)

h=—o00l=—00 +2 Z var(X)E[h;|E[h] + E[X] cov(h;, hl)]
oo X X
I=j+1
= Z Ccov Z h'u,,ja Z h'n, n+j |- 2
i=0 u=1 v=1 i s
! = var(X) Z Elr;] | + E[X]var Z h;
Since =0 g=0
_ _ = var(Y).
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