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Summary. Maichings for a random bipartite graph are considered.
Each of the aM nodes on one side of the graph is directly con-
nected to Q nodes chosen randomly and uniformly from among
the M nodes on the other side of the graph. The size of match-
ings found by two simple approximation algorithms, as well as the
size of the maximum matching when Q=2, are asymptotically
determined in the limit as Q tends to infinity with o fixed. The
work is motivated by a distributed communications protocol for
accessing a silent receiver. The theory of approximating slow
Markov random walks by ordinary differential equations is used
for the analysis.

1. INTRODUCTION

A set of M slots and a set of users are given. Each user
specifies a subset of slots, any one of which may eventually be
assigned to the user. An assignment is a choice, for each slot, of
at most one user from among the users that specify the slot, such
that each user is chosen for at most one slot. The size of an
assignment is defined to be the number of users that are assigned
slots. The utilization of an assignment is the size of an assign-
ment divided by M.

The setup just described corresponds to a bipartite graph as
follows. The two sets of nodes of the graph are the set of users
and the set of slots, and there is an edge between a particular user
and a particular slot if and only if the slot was one of those
specified by the user. An assignment corresponds to a matching,
which is a set of node-disjoint edges, as illustrated in Fig. 1. The
size of an assignment is the number of edges in the corresponding
matching. The problem of finding a maximum size matching is
called the bipartite matching problem[6].

Let Q be a positive integer. We will assume that the set of
slots that any user can specify is chosen at random and is uni-
formly distributed over the (Ig) possibilities, and that the sets
specified by different users are mutually independent.

This model arises in a simple packet radio network problem
[7. The users each wish to send a packet of information to a
silent destination station. The time axis is divided into frames
with M slots per frame. Each user transmits its packet Q times
using spread-spectrum transmission, in Q randomly chosen slots.
The receiver is assumed to know which slots each user will
transmit in before the frame begins. The receiver computes an
assignment, which is a choice of which user to listen to during
each slot. Assuming perfect receiver selection capability, the size
of the assignment is the number of successfully received packets.
A related problem is discussed in [3].
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We will consider three assignment strategies, described as
follows:

Sequential-by-User Assignment Consider the users one at a
time in an a priori fixed order. When a user is considered, first
determine which of the slots it selected are not already assigned to
other users. If there are any such slots, assign the user to one of
them, with all such slots being equally likely. Then go on to the
next user.

Sequential-by-Slot Assignment Suppose the slots are num-
bered and consider them in increasing order. When a slot is

considered, first determine which as yet unassigned users have
selected the slot. If there are any such users, assign the slot to
one of them, with all such users being equally likely. Then go
on to the next slot.

Maximum Assignment Compute a maximum size assignment
using the well-known labeling algorithm for bipartite graphs [see
6, p. 221-222], which takes at most a constant times QM compu-
tations.

The sequential-by-user strategy was used in [7], and a
method was given there for computing the average utilization as a
function of the number of users, the number of slots, and Q. Our
goal in this paper is to consider the assignment strategies as the
number of slots M tends to infinity, while the number of users is
[oM] so that the number of users per slot tends to a.. We denote
the limit of the mean average utilization for the three assignment
schemes by U, (0.Q), U (a,Q), and U, (a,Q) respectively. Pro-
positions 1, 2 and 3, given in the next three sections, describe
methods to readily compute these asymptotic average utilizations,
though an expression for U,(a,Q) is given only for Q=2.
Numerical results are summarized in a table at the end of the
paper. The method of analysis is the theory of "slow Markov
chains”--in particular we appeal to a theorem in Kushner’s book
[5]. The earliest paper we know of that applies this method to a
combinatorial problem is by Karp and Sipser [4]. The method is
also used in [1] and [2].

2. ANALYSIS OF THE SEQUENTIAL-BY-USER ASSIGN-
MENT ALGORITHM

Let X(k) denote the number of users successfully assigned
after k users have been considered, for 0<k <M. The average util-
EX(Mal)

ization is then
M



Proposition 1. Let (x(1): 0 <t < o) be determined by the ordi-
nary differential equation (ODE) x(0)=0; x(z) =1 — x (¢ )Q. Then

- Xk)  k
hm;{nirob. %TgM | —-—M x(M) I =0 2.1)
and
. EX
Uu@Q) = lim —Lby“—]) =x(a). @2.2)

Proof. Qbserve that X (k+1) = X (k) + &, where £, € {0,1}
and &, = 1 if and only if rot all Q slots specified by user k+1 are
among the X(k) slots already assigned. Clearly,

Xk
P&=11Xk),... XO)=1-—%2 23)
Mg

where we use the notation rg =r{r-1) ... (r-Q+1) for r>Q-1
and rp = 0 otherwise. Hence X is a Markov chain with stationary
transition probabilities[7]. We wish to apply the theory of slow
Markov random walks, so we will change notation somewhat to
match that of Kushner [5, Theorem 2, p. 108]. We define
€=1/M and X;f = eX (k) and note that X;5,; = X, + €&, and for
0<x <1,
c1ixf=x]=1- e
Pl =11Xf=x]=1 My

Since r¢ 2ry > (r-Q)€ we see that
im P[§ =1 1Xf=x]=lim E[§ | XE=x]=1=x2.
€0 €0
All the conditions of [5, Theorem 2, p. 108] apply so that Eq.
(2.1) is proved. Eq. (2.2) follows from Eq. (2.1) since X—([;—l'”ﬂ
is bounded and converges to x (o) in probability.

3. ANALYSIS OF THE SEQUENTIAL-BY-SLOT ASSIGN-
MENT ALGORITHM

Let X(k) denote the number of slots successfully assigned
after k slots have been considered. The average utilization of the

sequential-by-slot algorithm is thus ——=

Proposition 2. Let (x(¢),g(t):0<t < 1) be determined by the
ODE

x=1-¢7%
s = (1 - o2 218 3.nH
SR Y=
with (x(0),g (0)) = (0, Qo). Then
fmjn rob max, 15— 120 6y

and
(1.

Proof. Suppose the original model is changed so that each user
specifies Q slots chosen independently and uniformly, with
replacement. Hence, some users may select a slot more than once.
However, the expected number of users that do so can easily be
shown to be less than aQ%2 for all M, so that for the purposes
of proving Proposition 2 we can and do assume that the sampling
with replacement model is used. i

U@0)= lim XG0 _,

Suppose k slots have been considered so far. Let Y(k)
denote the sum over the remaining M-k slots of the number of
unassigned users that specify each slot. (If a user specifies a slot
multiple times, the user is counted multiple times.) Let &;(k)
denote the number of yet unassigned users that specify slot k+1.
A user is assigned to slot k+1 if and only if §;(k) 2 1. If a user
is assigned to slot k+1, consider the other Q-1 slots requested by
the user, and let £y(k) denote the number of them that have not
yet been considered. We then have, for k20

X(k+1) = X(k) + I[gl(k) 21}

Y(k+1) =Y (k) - §1¢k) - &0 g,y > 1)
Given (X(k), Y(k)), &;(k) has the binomial distribution with
parameters (¥ (k), —nl—k ), and also given (X (k)Y (k).£,(k)) with
(k) > 0, Ey(k) has a distribution which is nearly binomial with

Yk)

parameters (0 -1, —__}im). Thus,
XE =eX(k), Y =&Y (k), and 5=ck we have

if we set

£=—

"

lim P[E(K) 21 | Xf=x, Yy, sf=s | =1- exp(——lL)

€00 =5
lim EL-5(0) - §k) gep21) | Xé=x, Yoy, s ]

S A
I S TP R =
" T @b e

We can apply [5, Theorem 2, p. 108] to yield that

k k
im i [ XE—x(=) 1+ 1 YE-y(=)I1=0
Tt e A
where
D
i@)=1l-e s
. _
y(s)= -2 — (l-e l-S).l(_u
1-s Q(a-x)
with x(0) = 0 and y(0) = Qa. If we set g(s) = )’l(——ss)— we obtain
the equivalent equations (3.1) for computing (x(s) : 0<s<1), and

Eq. (3.2) is proved. Eq. (3.3) follows from Eq. (3.2) since 1%

is bounded and converges to x(1) in probability. O

4. ANALYSIS OF THE MAXIMUM ASSIGNMENT
The following proposition will be established in this section.

Proposition 3. Let Q=2 and let o > 0. The asymptotic average
utilization for an algorithm that produces maximum assignments is
given by Um(a, 0=2)=1=-r+w? where
r=min{r >0 : r =exp(20(1 —r))}. In particular,
Um(a, 0=2) =c for 0 Sasi.

A well-known algorithm [6, p. 222] efficiently finds max-
imum matchings in bipartite graphs. However, to only determine
the maximum size of assignments an even simpler algorithm,
which we describe next, can be used. The algorithm is defined as
follows: While there exists a slot with exactly one unassigned user
specifying the slot, chose one such slot at random and assign the
corresponding user to the slot. It is not difficult to see that the
assignments made by this algorithm are optimal. The algorithm
may terminate before all the users are assigned, so the algorithm
does not necessarily produce a maximum size assignment. How-
ever, we can still determine the maximum size of assignments
using this algorithm in the case Q=2.
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Indeed, let J(k) denote the set of unassigned slots that are
requested by at least two users after k slots have already been
assigned, and let k, denote the number of slots assigned when the
algorithm terminates. The following fact holds for the set J(k,)
after the algorithm terminates: Given any subset A of J(k,), the
sum over the slots in A of the number of requests for the slots by
unassigned users is at least 2IAl, where |Al denotes the cardinality
of IAl. Hence the number of unassigned users that request at least
one slot in A is at least IAl. Since A is an arbitrary subset of
J (k,), Hall's theorem for matching in bipartite graphs implies that
more assignments can be made so that all slots in J(k,) are
assigned. The size of a maximum matching is thus equal to
k, + 1A 1.

Turning now to the asymptotic analysis of the algorithm,
define the following variables to represent the state after k slots
have been assigned:

X (k) = the number of unassigned slots with exactly one unas-
signed user specifying them

X4(k) = the sum, over all slots in J (k), of the number of unas-
signed users that request the slot

X3k) = W k)

and let X (k) = (X (k), X 5(k), X5(k) ).

If the algorithm has just completed assigning users to k slots,
then the algorithm will continue if X (k) > 0. Suppose X (k) >0
and consider the next user and slot to be assigned to each other.
The assigned user also selected another alot, and we let &(k)
denote the number of other unassigned users in the other slot.
Note that the other slot is in J(k) if and only if §(k)=1. We have

Xy k+D) =X,() = 1 = Tggy=0) + 1 (gt )
Xak+) =Xo(k) — Iigrery — Tgwr =1
X3(k+1) = X3k) ~ I (gay=1)

Its not hard to see that
X, (k)

PLEK)=01XK)] = X100 + X0

and that
PLEK)=11X(K)] = p(Xqk), X3(k)P[EK)21 | X (k)]

where p(ab) is described as follows: If a distinct balls,
BBy, ... ,B,, are placed into b distinct boxes in an indepen-
dent, uniform fashion, and if all boxes are conditioned to have at
least two balls in them, then p(a,b) is the probability that the box
that contains ball B contains exactly one other ball in it.

Lemma 4.1. Given 8 >0, there exists M so large that
I pa,b) —p(-%) | <8 whenever a 2 2b 26M where

B\ =_ﬂ_ h tha l=_M.)__.
PQ) (o) for W such that TG me®

Proof of the lemma. The lengthy proof is omitted here. The
proof is based on the fact that the conditional number of balls is a
box is approximately Poisson distributed with mean L1, conditioned
to be at least two. It follows that the number of balls in the box
containing ball B is approximately Poisson distributed with mean
M, conditioned to be at least one. O

Consider the ordinary differential equation

. —X) + DXy
Bp=—l4 ———2
X1 +X2
. —x(1+P)
Xp= ————
XXy

. Pxy
i3=———

X1+X,y

with x(0) = ( 20e2%, 20(1-¢72%, 1 — e72%(1 + 20)), where we
X
write 7 for ‘p’(—z).
X3
Let 7 be such that the solution to the above ODE is bounded
away from the set {x; + x, =0 or x3 =0} over the time inter-

val [0, 7). Then [5, Theorem 2, p. 109] and Lemma 4.1 imply
that

lim in prob. max ||M —x(fl—) I =0.

m — ce O<ksM M

Thus, the asymptotic average - utilization is given by
U, (o, 0=2) =1, + x3(1,) where t, =min{ t>0:x;(¢)=0}. It
is straight forward to check that the above OIDE has the following

analytical solution, where p(z) = 2a(1 — é)i:
= _E_ +eM*-1
X)) =K +e )

xy(t) =l —e™)
x3)=1-e*1+ W

Note that p(¢) is monotone decreasing so that

u(to)zmax(u.>0:—2%+e_”-1=0}, @.1)
and since U, (0, Q=2 ) =1, +x5(t,),
HE?  u,)
Vg of (ML) g,
Un(@, @=2) = 00— Utp) + —o— + 2= (42)

Upon reexpressing Eqgs. (4.1) and (4.2) using the variable r defined
by u(,) = 2a (1-r) we get Proposition 3. O

Remark. A generalization of the ODE above was given by
Hajek and Cruz [1, p. 453] (though there was an error in their
definition of p,(a,b)--compare with p(a,b) here), who were
interested in finding when U, (®,Q) = a.. The analytical solution
that results in Proposition 3 is new, and similar expressions exist
for the more general ODE considered in [1]. The observation that
the simple algorithm determines the maximum size of assignments
even if U, (a, Q) # o also appears to be new.

5. NUMERICAL RESULTS AND DISCUSSION

We computed the asymptotic utilization for the three assign-
ment methods for several values of & and Q, using the expressions
in Propositions 1-3. The results are displayed in Table 1. The
utilizations for the sequential-by-user and the sequential-by-slot
assignment methods do not significantly differ from each other.
For Q=2 and « in the range 0.5<0<1.0, the maximum assignment
is about 10% larger than that found by the one-pass algorithms,
while for other values of ¢ the difference is smaller. - An obvious
upper bound on the average utilization is min(c, 1), and it is
interesting to note that utilizations for the sequential algorithms
come fairly close to the bound for Q=3, except perhaps for o near
one.
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For each Q2>2 there is a value o, (Q) so that U, (o, Q) = a
if and only if a<o.(Q). Proposition 3 shows that o, (2) = 0.5.
Cruz and Hajek [1, Prop. 2.1] used a moment method to provide a
lower bound on ¢, (Q) for all Q. The bound tends to one as Q
tends to infinity. For Q=3,4,5,6 or 7, the lower bounds are 0.65,
0.86, 0.94, 0.97 and 0.99, respectively. Thus, for example, if Q=4
and the number of users per slot is less than 0.86, then as M tends
to infinity the proportion of users that do not get slot assignments
tends to zero if an optimal assignment algorithm is used. Proposi-
tions 1 and 2 show that there is no such positive critical value of
o. for the two one-pass sequential strategies.

Finally, we will return to the discussion started in the intro-
duction about the application to distributed reservation-based
access to a silent receiver. In addition to computing the average
utilization for the sequential-by-user strategy, Wieselthier et. al [7]
also computed the effects of multiple simultaneous transmissions
under a more realistic model in which the spread-spectrum signal-
ing does not provide a perfect capture capability. The key to their
analysis is to compute the distribution of the number of other
transmissions in progress (called secondary interference in [3])
while the receiver is attempting to receive a typical packet. The
degradation caused by the other transmissions is the main reason
for the users to use a small value of Q. One might consider
assignment strategies in which the amount of other interference in
all slots is taken into account in the assignment process. (This is
done for a related problem in [3].) Though the analysis may tend
to be more difficult, we can expect that the performance of very
simple strategies will not be far from optimal, if the analysis in
this paper is any indication. '
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Figure 1. An example of an assignment. Six users each selected two out of
the five slots. The assignment consists of the set of boldface edges. This
corresponds to M=5, Q=2, a=1.2, and utilization equal to 0.8. The assignment
does not have maximum size.

Table 1. The asymptotic utilization achieved by the maximum assignment (for
Q=2 only), the sequential-by-user assignment, and the sequential-by-slot assign-
ment algorithms, as computed using Propositions 1-3. Each user selects Q slots
at random, and the number of users per slot is a.
Q=2 -

o Un U, U Q=4

- . o U, U,
0.10 010000 0.0997 00997 o oo 0iooo
020 020000 0.1974 0.1979
030 030000 02913 02927 020 0.1999 02000
30 0. : : 030 02995 02998

0.40 0.40000 0.3800 0.3826
0.50 0.50000 0.4621 0.4662
0.60 059630 0.5371 0.5425
0.70 0.67839 0.6044 0.6110
0.80 0.74452 0.6641 0.6716
0.90 0.79686 0.7163 0.7244
1.00 0.83810 0.7616 0.7699
1.50 0.94579 0.9052 09111

0.40 0.3980 0.3989
0.50 0.4939 0.4962
0.60 0.5853 0.5899
0.70 0.6696 0.6770
0.80 0.7443 0.7544
0.90 0.8078 0.8195
1.00 0.8592 0.8712

1.50 0.9770 0.9814
2.00 098096 0.9640 0.9670 200 09968 09976

250 099314 09866 09879
250 09996 09997

300 099750 0.9951 09956
300 0.9999 1.0000

3.50 099909 09982 09984
400 099966 09993 0.9994 3.50 1.0000 1.0000
400 10000 1.0000

Q=3 Q=5

¢ U U o U, U,
0.10 0.1000 0.1000 010 0.1000 0.1000

020 0.1996 01998 020 02000 0.2000
030 02980 0.2987

030 0.2999 0.3000
040 0.3938 03956

040 0.3993 0.3997
0.50 0.4852 0.4889

0.50 0.4974 0.4987
0.60 05703 0.5763

0.60 05925 0.5955
070 0.6476 0.6559

070 0.6818 0.6875
080 07157 07259

0.80 0.7619 0.7706
090 07742 0.7855

090 0.8205 0.8405
1.00 08231 0.8346

1.00 0.8830 0.8945
1.50 09545 0.9605

1.50 0.9880 0.9908
200 09895 09913

200 09990 0.9993
250 09976 09981

2.50 0.9999 0.9999
300 09995 09996 300 10000 10000
3.50 09999 0.9999 3.50 1.0000 1.0000
400 1.0000 1.0000 400 1.0000 1.0000
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