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Correspondence 

On the Strong Information Singularity of Certain 
Stationary Processes 

BRUCE E. HAJEK 

&stMCt-In an exploratory paper, T. Berger studied discrete random 
proceases which generate information slower than linearly with time. One 
of his objectives was to provide a physically meaningful definition of a 
deterministic process, and to this end he introduced the notion of strong 
information singularity. His work is supplemented by demonstrating that a 
large class of convariance stationary processes are strongly information 
singular with respect to a class of stationary Gaussian processes. One 
Important consequence is that for a large class of covariance stationary 
processes the information rate equals that of the process associated with 
the Browaian motion component of the spectral representation. 

I. INTRODUCTION 

Information singular random processes, as  def ined by  Berger 
[l], are those which are negligible or deterministic in some 
information-theoretic sense.  Berger demonstrated that for the 
class of strictly stationary square integrable random processes, 
information-singular processes are simply those having zero 
Kolmogorov entropy (or equivalently, those processes which are 
completely determined by  their infinite past). Hence the study of 
information singularity promises a  general ization of the notion 
of zero entropy to wide-sense stationary and  even more general  
processes. One  of Berger’s main results was to classify a  certain 
collection of wide-sense stationary random processes as  informa- 
tion singular by  considering the behavior of the processes ap-  
pear ing in their spectral representations. Our  main results in- 
volve similar spectral considerations. 

A second aspect  of Berger’s work involves determining the 
information conveyed by a  random process in the presence of 
measurement  inaccuracies or noise. This leads to considering the 
information content of a  random process in the presence of 
other random processes and  opens  the possibility of decompos-  
ing a  random process into singular and  “regular” components.  
Berger def ined a  process to be  strongly information singular with 
respect to a  second process if it is deterministic in a  specific 
physically meaningful sense,  even  when  “corrupted” by the 
second process. 

W e  will prove that the class of processes which Berger proved 
were information singular are actually strongly information sin- 
gular with respect to Gaussian processes having bounded  
spectral density. This solves open  problem number  3  listed by  
Berger. The  class of information-singular processes considered 
here consists of those complex-valued wide-sense stationary 
processes which have  a  continuous-in-probabil i ty independent  
increment jump process in their spectral representation. The  
proof, given in the next section, involves the construction of a  
nonl inear estimator which is interesting in its own right. First we 
state the definitions of information singularity presented by  
Berger and  then consider two revealing examples. 
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Let { Y,,k=O, ?  1,. * .} and  {IV,,k=O,+l;.-} be  twoinde- 
pendent  random processes with components  taking values in C, 
the set of complex numbers.  For any  m=2n+ 1, let Y= 
(Y-,,**-, Y,) and  W=(  We,; . . , W,). Let (0, 1  } * be  the set of 
all finite binary strings, and  let Z(s) denote the length of SE 
(0, 1  }*. { Y,} is def ined to be  strongly variable-length information 
singular relative to { W,} if there exists a  sequence of encoder-  
estimators and  decoders  {e, : V+{O, l}*} and  {d, : (0, l}*+ 
Cm} such that 

where ?= &(e,( Y+ IV)) and  I]. I] denotes the Eucl idean norm 
in complex m-space. W e  could alternatively require that there 
exist good  block codes with length arbitrarily small compared 
with m, yielding the definition of strongly “block” information 
singular. It is unknown whether or not the two definitions 
coincide. W e  will henceforth implicitly consider only variable- 
length information singularity. The  process { Y,} is simply infor- 
mation singular if it is strongly information singular with respect 
to the identically zero process. 

One  implication of the strong information singularity of {Y,} 
with respect to { W,} is that for the purpose of transmitting 
blocks from the “source” process { Y, +  W,} with small average 
mean  square distortion, the component  { Y,} is negligible. From 
another point of view, we could be  given a  “signal” process { Yk} 
and  a  “noise” process { W,}. The  information singularity of 
{ Yk} with respect to { W,) implies that the process {Y,} is 
deterministic in the following sense.  Even when  a  noisy version 
of it is observed,  namely { Y, +  W,), the process { Y,} can  be  
estimated with arbitrarily small mean  square error and  then can 
be  conveyed over any  channel  with positive capacity. 

W e  should point out that the notion of strong information 
singularity seems to involve two separate concepts-estimation 
and  information singularity. W e  conjecture that an  information 
singular random process which may be  accurately (in the mean  
square sense)  estimated from a  noisy version of itself is strongly 
information singular with respect to the noise. The  converse is 
obviously true and  adds  further signif icance to the notion of 
strong information singularity. 

W e  will now consider two simple examples. Let U,,, U,, . +  . be  
mutually independent  with P( Vi =  0) =  P( Ui =  1) =  0.5. Define Yk 
for positive integers k by  

Y, =  2  $q(mod 2), ifk= g $2j(ijE{0,1}). 
j=O j=O 

Construct (Ye, Y-i; . .) so  that (Ye, Y-i;. .) and  (Y,, Y,; . -) 
are independent  and  so that (Ye, Y-i; . . ) has  the same distribu- 
tion as  ( Y,, YZ,. . . ). The  variables of the process { Y,} are 
pairwise independent  so  that { Yk} is covar iance stationary. For 
j>o, (Y,;.., Yli- i) is completely determined by  
(Uo,**., Uj!.-,), or j bits of information. W e  conclude that for 
anym=2n+l,  Y=(YPn;.., Y,) is completely determined by  at 
most 2+logzm bits of information, so  that {Y,} is obviously 
information singular. The  sequence Y,, Y,, . . . cont inues to gen-  
erate information, for if j >  0, Y,, is independent  of the collec- 
tion of all variables with lesser index. (This provides a  counter- 
example to Berger’s conjecture that covariance-stat ionary infor- 
mation-singular processes are “predictable” or subordinate to 
their past.) 

Let { W,} be  a  process consisting of independent  identically 
distributed Gaussian random variables with mean  zero and  
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variance a*. We show that {Y,) is strongly information singular 
with respect to { W,}. Let m =2n -t- 1 where n =2’- 1 for some 
r > 0. Consider the problem of estimating (U,,, . . . , U,- ,) from 
cy,+ w,,*.*, Y, + W,). For any j with O,<j<r- 1, subtract the 
sum of those Y, + W,, 1 <k <n such that I..$$ is not a term in the 
sum defining Y,, from the sum of those Y, + W, such that Uj is 
a term in the sum defining Y,. Upon division by (n + 1)/2 we 
obtain an estimate of Uj which, given U., is normally distributed 

2’ with mean Uj and variance 4n(n + l)- . We can in fact estimate 
(Uo,* * * ,U,-,) from (Y,+ W,;.., Y, + W,) with error probabil- 
ity converging to zero with n faster than exp(-n/2az). The 
number of bits needed to specify an estimate of (U,, . . . , U,- ,) is 
r = log,n. An estimate of (Y,; . * Y,) which is exactly equal to 
(Y,,. * - , Y,,) with probability 1- o(exp(-n/20*)) can be con- 
structed from the estimate of ( U,,, . . . , U,- J. This estimation-en- 
coding procedure may be easily modified to prove the strong 
information singularity of { Yk} with respect to { W,}. 

The next example we consider was studied by Berger. If A is 
distributed on (- 71, a) and if A is a complex square integrable 
random amplitude, then (Z,) given by Z, = A exp(ikA) is 
information singular. This is intuitively pleasing, since a good 
estimate of (Z-,,a * . , Z,) may be specified by giving a good 
estimate of only two random variables, A and A. The informa- 
tion singularity of {Z,} does not imply the strong information 
singularity of {Z,} with respect to an arbitrary process {Nk). 
For example, if A and A are nondegenerate and {Nk} has the 
same distribution as {Z,), then {Z,) is not strongly information 
singular with respect to { Nk}. A fundamental idea espoused by 
Berger is that strong information singularity naturally arises 
when an information singular process is spectrally “orthogonal” 
to a second process. Our  main results, presented in the next 
section, support this idea. 

II. STRONGINFORMATIONSINGULARITYOFACLASSOF 
PROCESSES 

Suppose (X,} is a complex-valued wide-sense stationary ran- 
dom process. Then, according to the spectral representation 
theorem [2], there exists a complex orthogonal increment process 
{ /I(X), t < A < $} such that, using quadratic mean integrals, 

x,= 
J-; 

t ,pkA @(A) almost everywhere (a.e.). 

The power spectral measure of {X,} is given by S(dX)= 
E(] fl(dh)]*), which is also the infinitesimal covariance of the 
process { /3(X)}. The variance of X, is ff,$ = S({X : - i < X < i}). 
Linear prediction theory uses only the second order properties of 
{X,}. Equivalently, since the autocorrelation function of {X,} is 
determined by S(dX) (formally by Fourier transform), only the 
power spectral measure S(dh) is needed to apply linear predict- 
ion theory. However, as we shall see, the information rate of 
{X,} is not determined by S(dX), but depends on the detailed 
behavior of the sample paths of { /3(A)}. 

Suppose now that { /3(h)} has independent, not merely orthog- 
onal, increments. In addition, assume that { /3(A)} is continuous 
in probability and (without loss of generality) right continuous 
with finite limits from the left. Then {p(A)} may be decomposed 
into the sum of two independent processes {t(X)} and {n(X)} 
such that (t(h)} is a pure jump process with independent incre- 
ments and {n(A)} is a complex Wiener process (a continuous 
independent increment process). The process {&+} = { @(A) - 
n(A)} is continuous in probability, right continuous, and has 
finite left limits. This decomposition induces an additive decom- 
position of the process {X,}, for if we define 

and 

z,= 
s 

t e2nikA d&A) a.e. 
-f (1) 

Nk= a.e. (2) 

then, with probability one, Xk= Zk+Nk for all k. It was shown 
by Berger that the process {Zk} is information singular. To 
simplify matters we will require that the process {Nk} have 
bounded spectral density. That is, if S,(dX) is the power spectral 
measure of { Nk}, we require that S,([ - f,h]) have a bounded 
derivative for - f <h< $. This requirement is satisfied if, for 
example, S,(dh) = u;dX so that {Nk} is Gaussian white noise. 
Our  main result is the following theorem. 

Theorem: {Z,} is strongly information singular with respect 
to {N/c). 

Remark: When N,=O we obtain Berger’s Theorem 2 that 
{Z,) is information singular. 

Proof: Choose m = 2n + 1 and set Z= (Z- n,. . . , Z,) and 
N=(N-;- * N,,). Define the discrete Fourier transforms 

and 

Tj = 
e - i*Wi/m)Nk, 

(3) 

- Vm k=-n 

Let E=(.$-,,. . . ,5,J and g=(q-,,.-. ,n,J. The reader should 
keep in mind that $,& etc., depend on m = 2n + 1. Note that the 
mappings Z-6 and N-g are linear Euclidean norm preserving 
mappings of @ ” onto C”’ with inverses given by 

and 

(5) 

(6) 

It follows that if we have an estimate of t we can, by inverse 
transforming the estimate, estimate Z with, the same average 
squared error. We will show that estimators 5 based on t+q (or 
equivalently, on Z+ N) exist such that 

and 

J&l ; H(Q = 0. (8) 

By the basic theorem for variable-length source coding ([3, p. 
SO]), 6 can be noiselessly encoded with a variable-length code of 
average length less than H(5) + 1. The construction of 5 satisfying 
(7) and (8) will therefore complete the proof of the theorem. 

Intuitively, the reason for taking Fourier transforms, and 
thereby shifting to the frequency domain, is that the singularity 
of {Z,} with respect to { Nk} is best observed in the frequency 
domain. Formally, the power frequency spectrum of a typical 
realization of {Z,} consists of at most a countable infinity of 
impulses, whereas a typical realization of { Nk} has a continuous 
power spectrum. 

The construction of g will proceed via a lemma, proved in the 
next section, which provides another estimator 4 of 6. The 
estimator 6 will then simply be taken to be a quantized version 
of 6. 

Lemma: Given z, D 2 0, there exists for all large m = 2n + 1 an 
estimator g=Q-,; * 1 ,&,) of E based on t+q such that 

and 

; k&@k+“) GE C-9 

-+ill%D. (10) 
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Starting with 1  satisfying (9) and  (lo), we will now define a. 
Let 

&=2ka if(2k-l)fi <$<(2k+l)fl; k=O,+l;**. 

It is clear that (l/m)l@-i\I*<D. Using (10) and  the inequality 
~~a+b~~2<2~~a~~2+2~~b~~2 we obtain 

~~lli-Ell* Q &E(Il$-$lI*+ ~~5-~~~‘) ~40. (11) 

W e  will next show that H(& can be  made  small. Our  proof is 
very similar to Berger’s proof of Lemma 3. Note that by  (1 l), 

;Ellh2 < ;E(ll$-[l12+ 11~11*)  <  8D+2u;.  (12) 

In terms of 4,,(m) = P($ = 2kfi ), (9) and  (12), respectively, 
imply that 

A 5 2 q,k(m)Ge (13) 
/=-II k#O 

and  

The  function g,,,(u) has  period one,  is cont inuous, and  g,,,(u)* 
restricted to the interval [-i, i] converges to a  unit impulse at 
the origin as  m increases without limit. W e  conclude that tj 
depends  primarily on  the behavior of the process {MA)} near  
h  =  j/ m. Similarly, 

5’ ppm(h- f ) &(A). (19) 

Recall that (I/m)E\~[l~*=b’and  (1/m)EllglI*=u* for all m  SO 
that in some average sense,  ;he var iance of the varitbles C, and  nj 
is of the same order of magni tude for allj and  m. However,  for 
large m, we see from (17) that .$ will be  very large when  a  jump 
in {&A)} occurs near  h=j/m, but that with high probability 6  
will be  quite small. In fact, we shall prove below that in some 
average sense the 4  converge in distribution to zero as  m-+w. 

The  variables nj, on  the other hand,  are all Gaussian with 
var iance bounded  above  for all m  = 2n  + 1  and  j. In fact, we have  
assumed that the process {Nk} has  a  bounded  spectral density. 
Thus there is a  constant M such that 

(14) 

S,(dh)=E(ldv&i)I*) <Mdh.  

Since (n(A)} is a  W iener process it follows that sj is Gaussian for 
all m  and  that 

I” j=-,, k=-oo  

where y=(80+2uf)/D is a  constant, 
entropy of t is 

independent  of m. The  

4 q&j = - k  i Pj,o(m)log Pj,o(m) 
/=-?I 

1 n 
- $ x 2 q,k(m)log q,kcrn). (15) 

/=-II k#O 

Using the fact that (13) implies that (l/m) XT= --n q,,(m) > 1  
- e, the concavity and  monotonicity of -(Y log (Y for (Y near  1, 
and  Jensen’s inequality, we obtain 

- 4  i 4,0(mYog $0(m) 
r” j= - -n  

Pj,o(m) 

< -(l-e)log(l-e). (16) 
This tends to zero as  e  tends to zero. Using Lagrange’s method 
one  easily finds that the second term in (\5) is maximized 
subject to (13) and  (14) when  Pj,k(m)= cc-OK (no dependence  
on  j), where c and  cr are m-dependent  and  chosen so that (13) 
and  (14) are satisfied with equality. Given this, the second half 
of Berger’s proof of Lemma 3  goes  through without change  to 
yield that the second term in 115)  converges to zero as  m+co 
and  e-+0. W e  obtain (l/m)H(&O as m-co and  e-0 for any  
fixed D > 0. In view of (1 l), the existence of a  sequence of 
estimators 4  satisfying (7) and  (8) is guaranteed.  

III. ANESTIMATION RESULT-PROOFOFLEMMA 

In this section we prove the lemma stated in Section II. W e  
will begin by  characterizing the distribution of 5  and  g. From (1) 
and  (3) we obtain 

=  /-ilg,,,(h- A) dt(X) a.e. 
2  

where 

(20) 

where the last equality is apparent  from (18). W e  conclude that 
for each  d  > 0  there is a  constant ed  such that, for all j and  m, 

P(IaI >d) G& E(lqj12Xlqjl>d) Gcd (21) 

where x denotes an  indicator function and  cd converges to zero 
as  d  increases to infinity. 

The  statement that the .$ converge to zero in distribution in 
some average sense is made  precise by  the following two facts: 

pm ; i: P(1.g >r)=O, if r>O (22) 
J= -!I 

and  

l im ’ i E(I~12x(~E,IG3d))=07 if d  >  0. 
m-+m m (23) 

J-- -n 

Equation (23) follows from (22), because for all r >0, 

; i E(k12x(lt,l<3d)) <r*+ g  i: P(lSjzI a), 
,=-PI J= -t, 

and  by (22) the right side converges to r* as  m+oo.  Berger 
proved (22) for the case when  the process {&A)} has  stationarily 
distributed increments. In fact, in that case, one  easily sees from 
(17) and  the periodicity of g,(u) that for fixed m = 2n  + 1, 
5-m. * * ,L are identically distributed. Berger then showed that 
as  m+co, the 4  converge to zero in distribution, implying (22). 
When  the process {((A)} has  possibly nonstat ionary increments, 
the variables .$ will no  longer converge to zero in distribution 
uniformly, but (22) is strong enough  for our  purposes.  

Proof of (22): W e  prove (22) for the case when  {[(A)} and  
hence  the 6  take on  real values. Our  proof is easily modif ied to 
cover the general  complex case. 

Choose any  r >  0  and  e  > 0. Since the process (<(A)} is an  
independent  increment process, cont inuous in probability, its 
characteristic function may be  expressed as  (see [5] for general  
theory) 

E {exp iu(E(h) -5(M)) 

= exp Lydh(  ha(A) +  Irn eiux - 1  - iuxII(A,dn)). 
-cc 
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The spectral measure n&A) of (c(h)} is a Bore1 measure for 
each A and is continuous in h for each A. Formally II@, A) is the 
instantaneous (at 1) expected number of jumps of {t(X)} per unit 
length which have magnitude in A. It is related to the power 
spectral measure of {Z,} by 

S,(dX) = dhJ m  x’IT(X,dx). 
-cc 

By our assumption that {((A)} was a pure jump process, it 
follows that for 6 small enough 

* 
x’II(X, dx) < g . 

By the Levy decomposition theorem we can decompose \&A)} 
into the sum of two independent processes, {t*(A)} and {[ (A)}, 
such that the {<‘(X)} are both independent increment processes, 
which are both continuous in probability, right continuous, 
and have finite limits on the left. In addition, {.$‘(X)} is 
constant except for jumps of magnitude at least d, the jumps of 
{.$*(A)} have magnitude less than d, and the spectral measures 
IIj(&dx) of {</(A)} satisfy 

~‘(X,A)=~(A,An(-S,6)‘), I12(hA)=II(X,An(-8,s)). 

Use (17) with {<(A)} replaced by {.$ ‘(A)} or {t2(A)} to define 
variables 6’ = (5’ n, * . . , [J;t> and [2 = (<! n,. * . , S,‘), 
Clearly (=[I +t2 a.e.. Hence 

respectively. 

J= --n J= --n 

+ f i p(l‘$*I>r/2) (25) 
I=--n 

Hence 

= /’ gi(l-j/m)/x*II’(X,dx) dh. 
2 

f,(X)= ;i5n+ 6)‘. 

We claim that f,(X) < 5 for all m,h. In fact f,(A) is periodic with 
period I/m, and for IhI < 1/2m 

fm(v=L i 
sin2(mIIh-jH) 

m2 j--n sin2(II(h-j/m)) 

<1+1 i: 1 
m* j;+;n sin*(II(X - j/m)) 

‘=a 
<1+1 ‘zfl 1 

4m2 j= --n (A-j/m)* .1+& ,g 2 
I 

j+O 
J I(&: 

m 
> 

=1+25 1<5. 
j=l (1 -2j)2 ’ 

Therefore, by Chebyshev’s inequality, (24) and (26), 

; ,$ P(l[;l>;)+ ,$ E[l$212]+5$<r/2. - 
J---n J= -tl 

(27) 

The expected number of jumps of the process (.$l(x>) is 
1 !!:,211(&( - S,S)c) dX which is finite. Hence there is a large 
constant K such that P(A) > 1 - e/4 where A is the event that 
{[l(h)} has at most K jumps, and all of those jumps have 
magnitude less than K. When A holds, 4’ will be very near zero 
unless j/m is in a small neighborhood of at most K values of X 
such that {.$‘(A)} has a jump. As m  increases, these neighbor- 
hoods shrink to the set of discontinuities of {{@)} so that 

for large enough m  = 2n + I. Combining this with (25) and (27) 
completes the proof of (22). 

The Estimation Procedure: We now specify our estimate 1 of 4. 
Choose d > 0, and for - n <j <n let 

$j = Fj + 59 if 14 + njl> 2d 

=o, if 14 + 51 < 2d. 

It is to be demonstrated that if m  = 2n + 1 and d are chosen large 
enough, then (9) and (10) are satisfied. First note that 

which by (22) converges to zero as n, d-too. Thus (9) is satisfied 
if n and d are large. Now for - n <j Q  n, 

E(I~-~j12)=E(l~j12X~~+~~>2d)+E(I~12X~~+5,~<2d) 

~E(lIli12X,p,>d)+E(l~12X,~(>d) 

+ E( k$j12x(y,l>d) + E( ltj12x1$1<3d) 

G’d+Mp(I~jl >d)+ E(l~j12)Ed+E(l~12X~~~<3d). 

It then follows from (22), (23), and the fact that (l/m)ll~l12= CT,’ 
that if m  =2n + 1 and d are chosen large enough, then (10) is 
satisfied. 

IV. CONCLUDINGREMARKS 

Many important questions remain to be solved in the theory 
of information singularity. For example, when does (strong) 
variable-length information singularity imply (strong) block in- 
formation singularity? Is strong information singularity a con- 
sequence of information singularity together with a “well-esti- 
matable” property as alluded to in Section I? 

Another important problem is to find the extent to which the 
results of [1] and the present paper generalize to arbitrary 
wide-sense stationary processes. After all, the independent incre- 
ment property assumed here for the spectral representation 
processes seems much stronger than the most general, or orthog- 
onal increment, property. It is interesting to note, however, that 
whenever a wide-sense stationary Gaussian process (which is, of 
course, strictly stationary) has a spectral density, then its spectral 
representation process can be taken to be a continuous indepen- 
dent increment process, or Brownian motion. Hence the main 
result of this correspondence is that any process {Z,} with a 
continuous-in-probability pure jump process in its spectral rep- 
resentation is strongly information singular with respect to any 
stationary Gaussian process with bounded spectral density. In 
Fact, we may dispense with the boundedness condition. One way 
to handle the unbounded case is to choose M  so large that, 
except for a h set of small measure, the spectral density of the 
Gaussian process is less than M. Our estimators would then, 
loosely speaking, only attempt to estimate that part of the 
frequency spectrum of {Zk} for which the average noise power 
per unit bandwidth was less than M. 
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Symmetries of Binary Goppa Codes 

OSCAR MORENO 

AMract-It is known that extended Goppa codes are invariant under 
the go-code, where v = Ad’ + B. 

the group of transformations Z+(AZ+B)/(CZ+D), with AD+BC#O. 
Corollaa 2: 

‘II& invariance is used here to classify cubic and quartlc irreducible Goppa (X(q))+(X((Aa:+ B)/(C$+ D))) 
codes and to investigate their symmetry groups. A computer has been used 
to determine the actual group of the codes of length 33 (for cubits and permutes the extended g,,-code into the extended go-code, where 

quartics). It has been said, concerning the trends in symmetry groups with u = (Au”+ B)/(Cu” + D). 

respect to the Gilbert bound, that “a good family of codes can be linear or We will now use these theorems to classify Goppa codes. 

have many symmetries, but not both” [8]. The groups found here are rather Theorem 4: There is only one g-code for irreducible g of 
small; and so the results reinforce that statement. degree 2. 

I. INTRODUCTION Proof: We will work in the extension field GF(2m)[u] where 

There are four sections in this correspondence. In Section II u is a root of g. Since the degree of g is 2, it is known that every 

results from [3] and [l] are restated and used to classify cubic element of GF (2”) [u] can be written as Au+ B with A, B E 

and quartic extended Goppa codes. In the next section the GF(2m). Also any other irreducible polynomial of degree 2 is the 

largest possible group of symmetries (to be found from the group minimum polynomial of some u’ E GF(2m) [u] and u’ = Au + B. 

action given in [3]) is studied; that is to say its order and main Therefore, by Theorem I, the g,,,-code is a permutation of the 

characteristics are found. In the last section a computer is used g,,-code. cl 
to compare the results found here and the actual classification of 
Goppa codes (cubic and quartic) and their symmetry groups for 

Theorem 5: There is only one extended g-code for irreducible 

n=33. Finally, we would like to comment that we have consid- 
g of degree 3. 

ered only binary irreducible Goppa codes, even though some of Proof: As above let u be a root of g, of degree 3, and let us 
the results can be generalized. This provides a simpler structure work in GF (2”) [u]. Under the action of the group X-+(AX+ 
to the correspondence. B)/(CX+ D) (AD #BC), u is mapped into a subset of GF (2”) 

[u]. If we prove that this subset is GF(2m)(u)\GF(2m), then 
II. CLASSIFICATION THEOREMS Theorem 2 will give us the result. Two such images cannot be 

The binary Goppa code of length n =2” with Goppa poly- the same; otherwise, if 
nomial g(Z)’ consists of all vectors X = (X(oi)) = A’u+B’ Au+B _ 
Wad, X(%), . . . , X( a,)) E ZT (where { LY i . . . (yn } = GF (2”)), Cu+D C’u+D” 
satisfying by cross multiplying we would get an equation of degree 2 in u, 

contradicting the fact that the minimal polynomial of u has 
degree 3. Therefore, since the group (X-+(AX+ B)/(CX+ D), 
AD # BC) has n3 - n elements, where n = 2”, there is exactly that 

We call this code the g-code. We assume here that g is irreduc- number of elements in the image. But since there are precisely 
ible; then if u is any root of g, we may write n3- n elements in GF (2”) (u)\GF(2”), this means, by using 

$, $$ =O, 
Theorem 2, that there is only one extended cubic code. cl 

~EGF(~*‘) 
The following theorem gives a canonical form for quartics 

where t is the degree of g. Correspondingly, for u’ E GF(2”‘), 
under the equivalence relation of extended codes given by the 
group X+(AX+ B)/(CX+ D) (AD#BC), by using Theorem 2. 

i!$=O Theorem 6: The Goppa polynomial for any quartic extended 
codecanbechosentobeg,=X4+X2+BX+CsorX4+X+1, 

defines the code with Goppa polynomial g,,, the minimal poly- the latter only if m is odd. Here B varies in GF(2”) in such a 
nomial of u’. way that tr(B -I)# tr(l), and Cs is any given element not in the 

image of the map of GF(2m)+GF(2m) given by X+X4+X2+ 
BX. 
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supported in part by the University of Puerto Rico under an 0. C. E. G. I. Proof: Given any irreducible quartic X4 + AX3 + BX2 + CX 
grant and in part by the National Science Foundation under Grant RlM78- + D we can simplify it by means of our group in the following 
16787. 

The author is with the Department of Mathematics, University of Puerto 
way. First, if A #O we can eliminate A by the map X+X+ 

Rico, Rio Piedras, Puerto Rico 00931. (CA -‘)‘I2 followed by X-+1/X. Therefore, by using the group 
‘The coefficients of g(Z) are in GF(2m). we can take any irreducible quartic to X4+ AX’+ BX+ C. Now 
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Theorem 3: (X(a,))+(X(af)) permutes the g,-code into the 
g,,z-code. 

Corollary I: (X(q))-+(X(A$ + B)) permutes the g,-code into 


