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Abstract—A central fact in the theory of optimal auction
design is that the seller of a single object in an auction
with n bidders, having independent, random valuations,
typically cannot extract the full maximum value of the
object from the buyers. We show that if the seller has access
to a single bit of information, even if noisy, then the seller
can extract full value. The work is meant to explore the use
of information measures in mechanism design problems.

I. INTRODUCTION
There is an extensive theory of optimal auctions and

design of allocation mechanisms, including the seminal
papers of Myerson [6] and Riley and Samuelson [8],
and recent books [2–4]. In one version of the problem,
a single indivisible object is to be sold. Each of n
bidders or potential buyers submits a bid or signal to
the seller, and then one of the bidders is selected to
buy the object and make a payment for it. Examples
include the sale of a rare painting, or the sale of a
block of communication spectrum. Elements of game
theory enter, because the bidders are assumed to act
strategically, in trying to maximize their own payoffs.
Many theories of bounded rationality have been pro-
posed over the past decade or two in order to account
for the fact that the agents involved (bidders and seller)
may have limited computation power. In some situations,
there may also be limitations on communication. It may
therefore be interesting to assess the tradeoffs between
optimality or efficiency of allocation mechanisms, and
the information requirements. As a step in this direction,
this paper explores the value of a possibly noisy single
bit of information to a seller in the context of optimal
auction design.

II. OVERVIEW OF OPTIMAL AUCTIONS
Consider the auction of a single indivisible object by a

single seller to n bidders. Suppose the state of bidder i is
si ∈ {1, · · · ,mi} = Mi, with probability mass function
πi(si) > 0 for si ∈Mi. Also, suppose each bidder i has
a nonnegative valuation function wi defined on Mi, so

that wi(si) is the value of the object to bidder i. Suppose
the states s1, · · · , sn are mutually independent. Each
bidder and the seller know the probability mass functions
πi and valuation functions of all the bidders, but the state
si is private information of bidder i. Assume the object
has value w0 ≡ 0 to the seller. Each bidder i reports a
state s′i. A mechanism (p, x) is given by an allocation
probability distribution p = (pi(s′) : 1 ≤ i ≤ n) and
average charges (xi(s′) : 1 ≤ i ≤ n) to the bidders, for
each vector of reported states s′ = (s′1, · · · , s′n) ∈M =
M1 × · · · ×Mn. If s ∈ M and 1 ≤ i ≤ n, then s−i

denotes the vector (sj : j %= i). A mechanism is Bayes-
Nash incentive compatible (BN-IC) if for each i, if all
other bidders report their true values (i.e. s′−i = s−i)
then bidder i maximizes her own expected return by
also telling the truth. A BN-IC mechanism is said to be
interim individually rational (IIR) if, under truth telling
by all bidders,

E[net gain of bidder i|si] ≥ 0.

The maximum possible gain that can be created by
allocation of the object is E[maxi{wi(si)}]. This gain is
created if and only if the allocation is efficient, meaning
the object is sold to a bidder with maximum valuation.
A mechanism is called full seller extraction (FSE) if the
seller’s expected payoff is E[maxi{wi(si)}].
One could easily imagine auction mechanisms in

which the signal sent from a buyer i takes values in
a space different from Mi, and the buyers are allowed
to use mixed strategies–randomizing their bids. However,
the revelation principle of auction theory [6] implies that,
without loss of optimality, the seller can use auctions in
which the Bayes-Nash equilibrium which maximizes the
expected payment to the seller, is such that the signal
from buyer i is a truthful report of the buyer’s state in
Mi. That is, there is no loss of optimality in seeking
BN-IC mechanisms, based on revelation of state.
With this formulation, the search for a mechanism

which maximizes the revenue to the seller can be ex-



pressed as a linear programming problem in the x and
p variables. The expected revenue and the BN-IC and
IIR constraints are linear in these variables. Typically
there are no FSE, BN-IC, IIR allocation mechanisms, or
equivalently, no FSE IIR allocation mechanisms.
A simple example of an auction is the case of two

identical buyers, each valuing the object at H with
probability p, and L with probability 1 − p, where
0 ≤ L < H , and 0 < p < 1. This corresponds to
n = 2 and, for i ∈ {1, 2}, mi = 2, πi = (1− p, p), and
wi = (L, H). The problem is simple enough that the
linear equations for optimal auction design (see [5, 6])
can be solved without the aid of a computer. For some
parameter values the seller can extract more revenue on
the average if she is permitted to not sell the object
to either bidder. In case the seller must sell the object,
the optimal mechanism is to sell the object at the price
bH = H+(1−p)L

2−p if at least one bidder reports the high
state (i.e. state 2, for value H) and at price L if both
bidders report the low state. The object is sold to the
bidder with the higher bid if the bids are unequal, and
to either bidder with probability one half if the bids
are equal. The price bH is strictly smaller than H . If
it weren’t, a high state bidder would have incentive to
report the low state to the seller. In fact, the price bH is
precisely the value such that

(
p

2
+ 1− p)(H − bH) = (

1− p

2
)(H − L),

which means that a high state bidder would receive the
same expected payoff for reporting the high state to the
seller as reporting the low state to the seller. In the
notation of this paper, the optimal mechanism is given
by

p(2, 2) = ( 1
2 , 1

2 ) x(2, 2) = ( bH
2 , bH

2 )
p(2, 1) = (1, 0) x(2, 1) = (bH , 0)
p(1, 2) = (0, 1) x(1, 2) = (0, bH)
p(1, 1) = ( 1

2 , 1
2 ) x(1, 1) = (L

2 , L
2 )

Another way to view the optimal mechanism is that the
object is sold to the bidder offering the higher price, at
the price bid (i.e. a first price auction), with ties broken
by a fair coin flip, but only bid values L and bH are
accepted. The mechanism is not FSE because the buyers
retain excess value H − bH whenever at least one buyer
has the high state. The amount of expected value that the
seller does not extract is thus (2p−p2)(H− bH), which
simplifies to p(1−p)(H−L). In a sense, p(1−p)(H−
L) is the expected cost to the seller, sometimes called
information rent, for not knowing the private values of
the buyers.
If the seller has the option of withholding the object,

the above mechanism is still optimal if L ≥ pH . If

instead, L < pH , the optimal mechanism if withholding
is permitted is for the seller to sell at price H if at least
one bidder reports the high state, to a seller reporting the
high state. If both bidders report the low state, then the
seller withholds the object and receives no payment. If
L > 0, the mechanism is not FSE because the seller fails
to extract the value L when both buyers are low state.
The expected amount of value not extracted by the seller
is L(1− p)2.
Another indication that FSE is typically not possible

is offered by the case of auctions with continuously
distributed valuations. Suppose f is a probability den-
sity function on a finite interval [a, b] and F is the
corresponding cumulative distribution function, such that
t− 1−F (t)

f(t) is strictly increasing. For example, f could be
the uniform density for [a, b]. If the value of the object
to a buyer i has the density function f , then the optimal
auction is Vickrey’s second price auction [6]. The object
is sold to the highest bidder with the price equal to the
second highest bid. The dominant strategy for any buyer
in a second price auction is for her to bid her true state
[9], so that the mechanism is BN-IC. The mechanism
is not FSE, because the seller receives only the second
highest valuation. Auctions with nonsymmetric buyers
having continuous valuations are also typically not FSE
[6].

III. ON THE VALUE OF A RELIABLE BIT

So far we assume the seller has no private information.
Consider next a situation in which the seller has access
to a binary valued piece of private side information b,
where b is a random variable with values in {0, 1}. For
example, one could think that a helpful genie or spy
could report a binary valued function of s = (s1, . . . , sn)
to the seller. While b is allowed to be correlated with s,
to avoid trivialities b is not otherwise allowed to depend
on the vector of reported values s′. That is b and s′ are
conditionally independent given s. For example, it is not
allowed to take b = 1 if and only if the bidder with
the largest bid lies. Given the individual distributions
πi, the joint distribution of s and b is completely deter-
mined/specified by the function φ : M× {0, 1}→ [0, 1]
representing the conditional probability P [b|s] = φ(s, b).
Note that φ(s, 0) + φ(s, 1) = 1 for all s.
Assume that the seller and the bidders know that b

is available to the seller, and that they know the joint
distribution of s and b. The question we address is how
much value can the seller extract due to the existence
and use of b, for a best choice of φ.
Proposition 3.1: Suppose log2 mi ≤ ∏

j #=i mj for
each i. Then there is a choice of φ such that there exists
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an FSE, IIR, BN-IC mechanism for a seller with binary
private information b.
The proof of the proposition is based on using a

function u : M → {0, 1} with a certain property as a
hashing function. The function u is said to be sensitive to
its ith coordinate if for any two distinct values si and s′i,
there is a value of s−i such that u(si, s−i) %= u(s′i, s−i).
Lemma 3.2: Under the condition of Proposition 3.1,

there is a function u : M→ {0, 1} which is sensitive to
every coordinate.
Proof Without loss of generality, suppose m1 ≥

m2 ≥ · · · ≥ mn. By assumption, m1 ≤ 2m2···mn .
Assume in addition that m1 = m2. The lemma will first
be proved under this assumption, and then proved in
general. Define u (using the notation a∧ b = min{a, b})
for s ∈M by

u(s) =

 1 if s = (a, a, a ∧m3, a ∧m4, · · · , a ∧mn)
for some a with 1 ≤ a ≤ m2

0 else
We show that u is sensitive to every coordinate. To that
end, fix i with 1 ≤ i ≤ n and let si and s′i be distinct
values in Mi. Let s−i = (sj : j %= i) be determined
by sj = si ∧ mj for j %= i. Then u(si, s−i) = 1 and
u(s′i, s−i) = 0. Therefore u is sensitive to coordinate
i, and hence to any coordinate. The lemma is thus
true under the assumption that m1 = m2. (The above
construction wouldn’t work if m1 > m2, because if
i = 1 and s1 ≥ m2 and s′1 ≥ m2 then we would have
u(si, s−i) = u(s′i, s−i) = 1.)
To complete the proof in general, suppose m1 >

m2 ≥ m3 ≥ · · · ≥ mn. Let u(s) be defined on
M ∩ {s1 ≤ m2} as above. No matter how u is defined
on the rest of M, it will be sensitive to coordinate i
for 2 ≤ i ≤ n. In addition, the m2 functions of s−1,
defined by u(a, s−1) for a ∈ M2, are distinct binary
valued functions of s−1. Since m1 is less than or equal
to 2m2···mn , which is the total number of distinct binary
valued functions of s−1, it follows that u can be extended
to the rest of M so that u(a, s−1), for 1 ≤ a ≤ m1, are
distinct binary valued functions of s−1. The resulting
function u is sensitive to each of its n coordinates. The
lemma is proved. !.
Proof of Proposition 3.1 The mechanism used in the

proof is a first price auction with a huge punishment
for lying. Let u : M → {0, 1} be a function which
is sensitive to every coordinate. Given the vector of
reported values s′, the seller compares b to u(s′). If
they are not equal the seller imposes a huge fine on
all the bidders. This means that if any bidder were to lie
for any of its possible observed states, and if all other
bidders were always truthful, then the seller would have a

positive probability of detecting that someone has lied.
This makes truth telling a Bayes-Nash equilibrium for
the bidders. !

IV. ON THE VALUE OF A NOISY BIT
Proposition 3.1 shows that a single bit can be a very

effective piece of information. It relies rather heavily,
however, on the bit being perfectly reliable. If there
were a small chance that the value b were reported in
error, then there would be a small chance that the seller
would impose a huge fine even when the bidders were
all truthful. Then truth telling would not be individually
interim rational. This leads to the following question.
The seller’s side information b is said to be ε-reliable
for some ε > 0 if the function φ is restricted to
|φ(s, b) − 1

2 | ≤ ε for all s and b. As ε approaches zero
the side information becomes more nearly independent
of the state vector s. Assuming the side information is
ε reliable is equivalent to assuming that an arbitrary
function φ̃ is used to generate a bit b̃, and then b is
generated by switching b̃ to 1− b̃ with probability 1

2 − ε.
Proposition 4.1: Supposemi ≤ 1+

∏
j #=i mj for each

i. Then for any ε > 0 there is a choice of ε- reliable side
information for which there exists an FSE, IIR, BN-IC
mechanism.
At first this result may seem surprising, but in light

of the results of Crémer and McLean [1] it is easily
understood. Crémer and McLean [1], building on an
example of Myerson [6], show that if the states of
the bidders are dependent, then, subject to a mild rank
condition, FSE is possible. Arbitrarily small deviations
from independence can still allow for the rank condition
and therefore FSE to hold. Basically, even if the states
of the bidders are independent, they can be conditionally
dependent given b. The proof of the proposition, given
next, is similar to the construction of [1].
Lemma 4.2: Suppose K and L are positive integers

with K ≤ L + 1. Consider the K × 2L random matrix
U such that the variables (Ui,j : 1 ≤ i ≤ K, 1 ≤ j ≤
L) are independent random variables, each continuously
distributed over [0, 1], and Ui,j+L = 1 − Ui,j for 1 ≤
i ≤ K and 1 ≤ j ≤ L). Then U has full rank (i.e. rank
K) with probability one.
Proof Let e denote the K vector of all ones. Note that

since K−1 ≤ L, the variables of the first K−1 columns
of U are independent, and uniformly distributed random
variables. Thus, e and the first K − 1 columns of U are
linearly independent with probability one. Equivalently,
the first K−1 columns and the L+1st column of U are
linearly independent with probability one. Thus, U has
K linearly independent columns with probability one,
and hence U has full rank with probability one. !
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Proof of Proposition 4.1 The mechanism used in the
proof will be a second price auction with a tax hi(s′−i, b)
imposed on bidder i for each i. In the absence of a tax,
the interim expected gain of bidder i, assuming truth
telling, is

gi(si) = Es−i [(wi(si)−max
j #=i

wj(sj))+|si]

Since truth telling is a BN-IC strategy for a second price
auction with no tax (in fact a dominant strategy for each
bidder), and since the tax hi(s′−i, b) to bidder i does not
depend on the report of bidder i, the mechanism with tax
is also BN-IC. (However, it could be that truth telling is
not a dominant strategy for the second price auction with
taxes.)
In order for the mechanism to be IIR and FSE it is

necessary and sufficient that

gi(si) = E[hi(s−i, b)|si] (1)

For 1 ≤ i ≤ n, P [s−i, b|si] =
π−i(s−i)φ(si, s−i, b).Thus

E[hi(s−i, b)|si] =
∑
s−i,b

hi(s−i, b)π−i(s−i)φ(si, s−i, b).

For fixed i, the function hi can be selected so that
(1) is true for all values of si, as long as the mi ×
(2

∏
j #=i mj) matrix with si, (s−i, b)th entry equal to

π−i(s−i)φ(si, s−i, b) has full row rank. This matrix is
the product of two matrices: the first is the matrix of
the same dimension with si, (s−i, b)th entry equal to
φ(si, s−i, b), and the second matrix is a diagonal matrix
with the nonzero terms of the form π−i(s−i) on the
diagonal. Multiplication by the diagonal matrix does not
change the row rank. Therefore, a sufficient condition
for the existence of the taxes as required is that the
mi× (2

∏
j #=i mj) matrix with si, (s−i, b)th entry equal

to φ(si, s−i, b) has full row rank. Suppose the values
φ(s, b = 0) are independently distributed, each on the
interval [ 12 − ε, 1

2 + ε] with some probability density.
Then the matrices required to have full rank have the
form as in Lemma 4.2. With probability one, the matrix
has full rank. Since this is true for each i, it follows that
the random choice of φ satisfies all the required rank
conditions, with probability one. There thus exists an ε-
reliable deterministic choice for φ satisfying the required
rank conditions. !

V. CONCLUSION
In some sense, the results of this paper show that the

way communications engineers and information theorists
often measure information, either in bits or through
the use of Shannon’s notion of mutual information,

may not be well suited for the modeling of limited
communication among bidders. Or the result may simply
be a reflection of a lack of robustness in the formulation
of optimal auctions, indicated earlier by the example of
Myerson [6] and results of Crémer and R. McLean [1].
Or the result my reflect the fact that even though only
a single noisy bit is revealed to the seller, the seller has
to use exact knowledge of the joint distribution of the
single bit with the private valuations of the bidders.
The role of information, such as how much bidders

know about the value of an object, and how much
the seller knows about how much the bidders know
about the value of an object, and so on, is central to
much current research on mechanism design, based on
Bayesian formulations. Perhaps the context of robust
mechanisms for general environments (see, for example,
[7] ) would be a setting in which the notion of mutual
information could be used to quantify the value of
information in the context of auctions and mechanism
design.
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