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Abstract—This paper focuses on jammed timing channels. Pure
delay jammers with a maximum delay constraint, an average delay
constraint, or a maximum buffer size constraint are explored,
for continuous-time or discrete-time packet waveforms. Fluid
waveform approximations of each of these classes of waveforms
are employed to aid in analysis. Channel capacity is defined and
an information-theoretic game based on mutual information
rate is studied. Min-max optimal jammers and max-min
optimal input processes are sought. Bounds on themin–max and
max–minmutual information rates are described, and numerical
examples are given. For maximum-delay-constrained (MDC) jam-
mers with continuous-time packet waveforms, saddle-point input
and jammer strategies are identified. The capacity of the max-
imum-delay constrained jamming channel with continuous-time
packet waveforms is shown to equal the mutual information rate
of the saddle point. For MDC jammers with discrete-time packet
waveforms, saddle-point strategies are shown to exist. Jammers
which have quantized batch departures at regular intervals are
shown to perform well. Input processes with batches at regular
intervals perform well for MDC or maximum-buffer-size-con-
strained jammers.

Index Terms—Channel coding, covert timing channels, jam-
ming, network security.

I. INTRODUCTION

PACKET timing channels can sometimes be used to convey
covert messages. For example, as shown in Fig. 1, Bob can

transmit packets containing innocuous messages to Alice while
transmitting secret messages using packet timing. While the
channel may be naturally noisy due to delays in the underlying
packet channel; it still might be possible for Bob and Alice to
communicate at a high data rate using timing. Even if the com-
munication is monitored, a secret message may be overlooked.

We define a covert channel to be any channel used for com-
munication that is either not intended to be used for commu-
nication or that is intended to be used in a fundamentally dif-
ferent way. Acovert timing channelis a covert channel that uses
timing to convey information. See [32] for a collection of other
definitions.
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Fig. 1. Motivating example.

Fig. 2. Motivating example.

Covert timing channels can exist due to processor sharing on
a single machine, shared message buffers, or standard network
connections. In a typical covert channel scenario, a trusted user
with access to sensitive data passes the data to a user who does
not have access to the sensitive data by using a shared resource
as a covert channel. The trusted user may be unaware that data
is being passed if he is running a program containing a Trojan
horse.

Taking the viewpoint of a security authority who expects to
be able to monitor all communications on a given packet com-
munications system, the existence of this covert packet timing
channel may be undesirable. In particular, the complexity of
monitoring all possible ways in which information can be con-
veyed through packet timing may make monitoring impractical.
Rather than trying to monitor all packet timing channels, one
solution is to employ jamming devices which limit the useful-
ness of the packet timing channels, as shown in Fig. 2. If the
rate at which information can be conveyed using a packet timing
channel in the presence of a jamming device is guaranteed to be
acceptably low, the security authority will not need to monitor
the packet timing channel.

On the other hand, taking the viewpoint of a network user
concerned with secrecy, the use of a packet timing channel to
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circumvent packet monitoring systems may be desirable. Of
course, encryption is a straightforward way to attempt privacy,
but encryption can draw attention and can be compromised
with sufficient effort. The use of a packet timing channel,
possibly with encryption, may be a way to communicate
privately without drawing attention.

The goal of this work is to develop good jamming and coding
strategies for timing channels and to find bounds on the informa-
tion leakage under such strategies. We assume that all noise in
the timing channel is introduced by an intelligent jammer, since
the capacity of a timing channel with naturally occurring delay
is at least as large as the capacity of a jammer timing channel
assuming the same reasonable constraints on the jammer.

Perhaps Gallager [16] was the first to study the information
that packets can convey beyond the information within the tra-
ditional data portion of the packets. There is a literature on
covert communication through timing channels [3], [4], [17],
[19]–[21], [26]–[31], [33], [35], [36], [38] and through storage
channels [9], [33], [37]. Covert timing channels present a unique
security problem in that there is no apparent way to completely
eliminate them in a reliable communication system (e.g., [30]).
As a method to combat covert timing channels, Hu [19] pro-
poses to make all clocks available to user processes on com-
puters noisy.

One computer can covertly communicate to another by
modulating the timing of acknowledgment packets. Kang and
Moskowitz [20] introduced a mechanism that reduces the
capacity of this channel by smoothing and randomizing the
delay of acknowledgment packets. Venkatraman and Wolfe
[38] discuss estimation of the capacity of a covert channel using
an adaptive scheduling policy and they discuss the auditability
of network covert channels based on changes in traffic volume
over time.

The work of Anantharam and Verdú [3] and Bedekar and
Azizoglu [4] can be viewed as a study of queues as timing noise
devices. Sundaresan and Verdú [35] found how to minimize the
capacity of a timing channel consisting of a single server queue.
They constrained the packet service times, rather than the total
delay through the queue.

The remainder of the paper is organized as follows. Section II
presents the channel models and assumptions, and introduces
two generic jamming channels and two generic input processes.
Section III presents relationships among the various channel
models and gives a capacity bound. Sections IV–VI consider
the strategies applied to timing channels in the presence of jam-
mers with a maximum delay constraint, jammers with a max-
imum buffer size constraint, and jammers with an average delay
constraint, respectively. Discussion, examples, conclusions, and
ideas for future research are provided in Section VII. Proofs of
two theorems and additional information about jammers with an
average delay constraint are given in the Appendix.

II. PROBLEM FORMULATION

Waveforms representing cumulative arrivals are used in this
paper to describe the input or output of a covert packet timing
channel. Acontinuous-time packet waveformis a right-con-
tinuous, nondecreasing, integer-valued function on the nonneg-

Fig. 3. Typical waveforms for various waveform classes.

ative real line with . For , represents
the number of packets that arrive in the interval . Multiple
packets can arrive simultaneously for the continuous-time wave-
forms.

A discrete-time packet waveformis a function on the non-
negative integers such that and

for all . Throughput this paper, when discrete-time
models are concerned, for an integer , slot means the
same as time. For integer , is the number of packets
that arrive in slots 1 through, and is the
number of packets, either zero or one, that arrive in slot. The
restriction of at most one packet arrival per slot introduces a
lower bound on inter-packet spacing.

Two more classes of waveforms are defined to aid in
analysis. Acontinuous-time fluid waveform is a right-con-
tinuous, nondecreasing function on the nonnegative real line
with . Such waveforms can be obtained from the
original continuous-time packet waveforms by letting the
packet size converge to zero. Similarly, acontinuous-time,
rate-constrained fluid waveform is a continuous-time fluid
waveform such that for . These
waveforms are obtained from the original discrete-time packet
waveforms by letting the packet size and slot size converge
to zero together. Given a fluid waveform, and , let

, so that is the time by which
units of fluid arrive for waveform .
Typical input waveforms for the various waveform classes

are provided in Fig. 3. Note that the waveforms do not include
packet sequence numbers. This reflects our focus on packet
timing rather than on bits within the packets. In particular, we
do not permit the transmitter to code covert information by
using out-of-order sequence numbers, so the jammer has no
incentive to reorder packets. Waveforms of a finite duration

are frequently considered in the paper. Those are either
continuous-time waveforms defined over the interval of time

, or discrete-time waveforms defined over a finite interval
in discrete time .

Ideally, we would like to say something about actual codes
and jamming strategies. That is, for a particular class of jam-
ming strategies, we would like to find codes of high rate, with
arbitrarily small probability of decoding error when passed
through a jammer. In addition, we would like to understand the
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most effective jamming strategies in a particular class. This
view of the problem is called thecoding framework.

An codeconsists of an indexed set of waveforms
of duration , , and a mapping from the
set of duration waveforms to . The set

is the set of codewords, is the decoder, and
decoder output denotes an erasure. The rate of such a code
is .

Let represent a class of jammers and let . A rate
is achievableby randomized codes for arrival ratecodewords
and the jammer class if for any there exists a sequence
of random codes such that the following three proper-
ties hold:

i) for all ;

ii) , for all and ;

iii) the maximal probability of decoding error over all jam-
mers in the class and over all codewords converges to zero
as .

Thecapacity for and is the supremum of such rates.
We assume that a jammer can choose any causal delay

strategy, including strategies that change packet ordering,
subject to constraints on the delay. The jamming strategy can
be deterministic, or it can be random with memory. However,
in the case of packet waveforms, the jammer cannot delete
packets or insert duplicates or additional packets since this
might impact the underlying packet communication system.
Similarly, a jammer cannot alter a fluid waveform by inserting
or deleting fluid. The jammer knows that the number of packets
or amount of fluid in each codeword is approximately the same,
but in most cases the jammer does not knowor the code-
words. In addition, in most cases we assume that the jammer
knows time zero for the coder (i.e., the time when the code
transmission begins). We use randomized code capacity, which
implies that the coder and decoder have access to a source of
common randomness, so that they can randomly select codes
without the jammer’s knowledge.

The constraints considered for jammers include a maximum-
delay constraint, maximum-buffer-size constraint, and average-
delay constraint. For packet waveforms, a jammer is called a
maximum-delay-constrained(MDC) jammer with delay param-
eter if it delays no packet by or more time units. For fluid
waveforms, a jammer is MDC with delay parameterif for
any input and corresponding output,
for all . For packet waveforms, amaximum-buffer-con-
strained (MBC) jammer with parameter is a jammer that
holds no more than packets at any time in the continuous-time
case, or holds no more thanpackets from one slot to the next
slot in the discrete time case. For fluid waveforms, an MBC
jammer with parameter cannot hold more than units of
fluid at any time. For packet waveforms, given the lengthof
a code to be used, a jammer is called anaverage-delay-con-
strained(ADC) jammer with delay parameter if whenever

where is the number of arrivals up to time and is
the delay of theth packet. Similarly, for fluid waveforms, given
the length of a code to be used, a jammer is ADC with delay
parameter if whenever ,

where is the output waveform. When the delay parameter
is not explicitly stated, the parameter is used for MDC and
ADC jamming channels and the parameteris used for MBC
jamming channels.

The coder and the decoder are aware of the particular delay
constraints placed on the jammer, but are not aware of the actual
strategy used by the jammer. In the case of an maximum-delay
constraint, for example, the coder and the decoder will know
that there is a maximum-delay constraint for the jammer and
also know the value of the maximum delay. The coder does not
receive feedback from the decoder. In practice, if the delay con-
straints are unknown to the coder and the decoder, they can make
conservative assumptions. For example, in the case of a max-
imum-delay constraint, the coder and the decoder can assume a
particular maximum delay, and as long as the actual maximum
delay is less than or equal to the assumed maximum delay, the
communication will be reliable. Similarly, in the case of an av-
erage-delay constraint, the coder and decoder can assume the
average delay for the packets sent within a codeword is bounded
by some number , and as long as the actual average is less than
or equal to , the communication should be reliable.

We have just described the coding framework. An alterna-
tive is to view the input as a random process passing through a
jamming channel, and to consider the mutual information rate
between the input and output. We call this point of view thein-
formation-theoretic framework. For and processes and

, let where is the mutual
information for and up to time . For an input process
and a jamming channel , we write
where is the output of jammer when is the input.

We consider a zero sum game between the encoder and the
jammer, where mutual information per unit time is the objective
function. We first describe the information-theoretic game for
MDC and MBC jamming channels. We then describe the game
for ADC jamming channels, which requires slightly different
encoder and jammer constraints for technical reasons.

Fix an arrival rate . For a fixed , inputs for MDC
and MBC jamming channels in the information-theoretic frame-
work are constrained to be in the class

where is the number of packets (or quantity of fluid)
in the input up to time . We call input processes in rate
input processesfor MDC or MBC jamming channels.

For and , a particular class of MDC or MBC jam-
ming channels, let

and
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An input for which

(1)

is called anoptimal input on the interval in the sense
that no matter what jamming strategy is used, at leastunits
of mutual information will get through the jammer when input

is used and no other input can guarantee more information
leakage than . Likewise, a jammer for which

(2)

is called anoptimal jammer on the interval in the sense
that no matter what input is used, at most mutual informa-
tion will get through the jammer, and no other jammer can guar-
antee less information leakage than . Assuming intelligent
opponents, the encoder will use strategy(if it exists) and the
jammer will use strategy (if it exists). Even if these strate-
gies do not exist, intelligent encoders and jammers can select
strategies which come arbitrarily close to satisfying (1) and (2),
respectively.

For MDC and MBC jamming channels, we also define

(3)

and

(4)

Slightly abusing notation, we refer to as the - infor-
mation rate and we refer to as the - information rate.
We believe that the study of and is informative for under-
standing the capacity of jammed timing channels. In particular,
for many jamming channels, we believe that limits exist in (3)
and (4) and that . We show this result for the MDC
jamming channel for continuous-time packet waveforms, and
for degenerate cases where . Note that in
general, and .

An input strategy is a sequence of inputs with
, such that for each . An input

strategy is - optimal if

for any other input strategy . Similarly, a jamming
strategy is a sequence of jamming channels with

such that . A jamming strategy is
called - optimal if

for any other jamming strategy . If , then
the common value or is the saddle-point information rate.
Any pair consisting of a - optimal input strategy and a

- optimal jamming strategy is called a saddle point.
Next, we define the information-theoretic game for ADC

jamming channels. For fixed and , an input for an
ADC jamming channel is constrained to be in the class

where is the number of packets (or amount of fluid) in the
input up to time . We call inputs in rate inputs. For
a given class of arrival processes and fixed , we define the
class of ADC packet jamming channels as

inputs

where is the number of packets in the input up to time
and is the delay added to theth packet by a jammer . The
delay constraint for ADC fluid jammers is similarly defined.

For , , and a particular class of ADC jamming
channels , let

and

For ADC jamming channels, - and - infor-
mation rates

and

are defined similarly. In general, and for
ADC jamming channels.

Our goal in the information-theoretic framework is to identify
and for various model formulations, to understand which

encoders and jamming strategies have good performance, and
to understand relationships among, , and . We find that
constructions and bounds obtained in the information-theoretic
framework often allow us to say something about actual codes
and jamming strategies in the coding framework. However, we
have not found a broad class of coding theorems to firmly tie
the frameworks together.

We comment briefly on the definitions we have given for the
capacity , and the information rates and . Our choices
were guided by the theory of arbitrarily varying channels (AVC),
initiated by Blackwell, Breiman, and Thomasian [8], as well as
by our desire to have . See [12] and [23] for recent sur-
veys of the theory of AVCs, and [34] for a study of the related
error exponents. Three aspects of the jammed timing channel do
not fit the original formulation of AVCs: i) the jammed timing
channel has constraints, namely, an arrival rate constraint on
the coder and, in the case of average-delay constraints, a delay
constraint on the jammer, ii) the jammed timing channel has
memory, and iii) the jammer can causally observe the particular
input waveform used. Work of Csiszár and Narayan addresses
point i): the use of constraints for AVCs. The paper [13] in par-
ticular indicates that in defining the channel capacity, it is
more natural to impose constraints on each codeword and each
received word, rather than on averages over codewords or over
random codes. This suggests that our definition of channel ca-
pacity is most appropriate. Work of Lapidoth and Telatar [24]
addresses point ii): the use of certain AVCs with memory. A
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coding theorem is given for which the information rate is de-
fined in a manner similar to our definitions of and . Un-
fortunately, there is no known extension of the AVC theory that
addresses point iii).

The original capacity calculations for AVC channels [8] show
the benefit of using random codes for AVCs, which is why
we allow random codes. Unfortunately, due to point iii) men-
tioned earlier, Ahlswede’s method [2] cannot be used to de-
randomize the codes, so that implementation would require a
source of randomness known to the coder and decoder but not
to the jammer. Ahlswede’s method can fail even due to point i)
when the jammer is constrained if the capacity with an uncon-
strained jammer is zero [23, p. 2159, top part of column 2].

Blachman [7], Dobrushin [15], McEliece [25], and Hegdeet
al. [18] formulated a jamming game based on mutual infor-
mation in a different context. McEliece [25] and Hegdeet al.
[18] obtained coding theorems under the assumption that the
jammer acts independently on large consecutive time intervals.
The paper [14] explores variations of this problem formulation,
and shows that the connection between the information game
and coding theorems is somewhat tenuous and complex.

However, we find that study of the information game gives
substantial insight, if not always proving the existence of codes,
for the jammed timing channel.

A. Jamming Channels

In this subsection, we introduce the two generic jamming
channels mainly used in this paper.

Two reasonable types of jamming channels are suggested by
writing mutual information rate in two different ways (for dis-
crete-time packet waveforms so that entropies are finite)

with

the entropy per unit time of processup to time . First, a jam-
ming channel can make the output stream random and nearly
unrelated to the input so that is large enough that

. Second, a jamming channel can quan-
tize output levels and select regularly spaced times for changes
in the output levels so that is small. We have not found
any jamming channels of the first type that perform well, and in
fact, a capacity result for the generalized billiard ball channel of

. Berger [5], as discussed in Section V, suggests that jamming
channels of this type generally perform poorly. However, jam-
ming channels of the second type perform well in many cases.

Definition II.1: A periodic dump jammerwith period for
continuous-time packet waveforms is based on a collection of
dump times chosen by the jammer in-
dependently of the input to the jammer for some .
The jammer releases all packets it has at each dump time. (A
variation called the fill-alternating periodic dump jammer is de-
fined in Section IV.)

We also make use of a similarly defined periodic dump
jammer for discrete-time packet waveforms, whereis an

Fig. 4. Periodic quantized dump jammer,� = S.

integer and the dump slots are taken to be slots
with a random variable uniformly distributed

on . Since discrete-time packet waveforms allow only
one packet departure per slot, all packets in the jammer’s buffer
at a dump slot, including a possible packet arriving in the dump
slot itself, are transmitted in consecutive slots starting at the
dump slot.

The regularly spaced dump times of the periodic dump
jammer map many input signals to the same output signals.
This makes the output closer to deterministic than the input.
Equivalently, it makes it hard to recover the input from the
output. Taking this idea one step further—quantizing in both
time and number of packets—leads to the following definition.

Definition II.2: A periodic quantized dump jammerwith pa-
rameters and for continuous-time fluid waveforms is one
that releases units of fluid at a dump time, where

is the amount of fluid in the jammer’s buffer at timeand
the dump times are taken to be for some

. (See an example in Fig. 4.)

B. Input Processes

In this subsection, we introduce two generic input processes
that perform well for certain classes of jamming channels. We
refer to these input processes in the following sections.

Two reasonable types of input processes are suggested by
writing mutual information rate in terms of entropy rate (for dis-
crete-time packet waveforms)

First, an input process can be chosen to be highly random so
that is large. Second, an input process can be chosen
to take advantage of the jammer’s delay constraints to ensure
that the output is a good predictor of the jammer input so
that is small. For a maximum-delay constraint,
we have found an input process of the second type that is a

- optimal input process for continuous-time packet
waveforms. There are also input processes of the first type that
perform well in certain situations. The following is a class of
input processes along the lines of the second type.

Definition II.3: A batch-with-spacing- continuous-time
packet waveformis a continuous-time packet waveform such
that each jump time is a positive integer multiple of. That is,
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packets are transmitted in batches (the batch sizes remain to be
specified) with batches occurring everyseconds.

A batch-with-spacing- fluid waveformis the same, though
each batch size can be any positive real number. Abatch-with-
spacing- discrete-time packet waveformis similar, but a batch
can have at most packets, and the packets of a batch are trans-
mitted in contiguous slots, instead of all at once. Abatch-with-
spacing- rate-constrained fluid packet waveformis similar, but
a batch can have an amount of fluid less than or equal to, and
the fluid of a batch is transmitted at rate one in a time interval.

Another input process of the second type for continuous-time,
rate-constrained fluid waveforms and ADC jamming channels
is given in Section VI. We obtain a lower bound on capacity for
such a jamming channel by using the Gilbert–Varshamov bound
to show the existence of a deterministic code with vanishing
probability of error.

To obtain an input process of the first type ( large) for
inputs to ADC jamming channels, we would like to consider a
batch input for which the batch transmission times are chosen
according to a Poisson process. However, such an input does
not meet the input constraints for ADC channels. Instead, for a
fixed we consider inputs with a fixed number of packets
meeting the ADC input constraints and choose the transmission
times of the packets uniformly on so the input is similar
to a Poisson process.

Definition II.4: For a time , aPoisson-like input with
batch size for continuous-time packet waveforms is one which
has packets in the interval , with the packets
arranged into batches of size( is an integer), and with the
transmission times for the batches chosen independently and
uniformly on .

For a fixed time , a Poisson-like input with batch
size for continuous-time fluid waveforms is similar, with the
modification that can be real-valued. For a positive in-
teger multiple of , a Bernoulli-like input with batch size is
a discrete-time packet waveform which has packets
in slots such that packets are grouped into batches of size
with zero or one batches transmitted every super-slot (slots)
and with the batch transmission super-slots chosen uniformly
among all possible schemes. Finally, for a fixed time

such that a real-valued evenly divides , a version
of the Bernoulli-like input with batch size suitable for the
rate-constrained fluid model is defined similarly, where batches
of fluid are transmitted over randomly selected-slot windows.

III. RELATIONSHIPSAMONG MODELS

In this section, we introduce the relationships among the var-
ious packet and fluid models. In addition, we show that
for MDC jammers with discrete-time packet waveforms. Fi-
nally, we show that for each of the jamming channel
models.

A. Scaling

We write to represent the - information
per unit time for a rate input process and a constrained
jammer with delay parameter and waveforms of type ,

where is one of the following:CPfor continuous-time packet
waveforms,DP for discrete-time packet waveforms,CF for
continuous-time fluid waveforms, andRF for continuous-time,
rate-constrained fluid waveforms. Similarly, is the

- information per unit time for waveforms of type
. Note that is taken over all time for model ,

whereas is defined over .

Theorem III.1: and satisfy the
following scaling relationship for MDC or ADC jamming
channels:

and

for some functions and .
Proof of Theorem III.1:Scale time so that one unit of time

in the new time scale is units of time on the old time scale.
Then on the new scale, the arrival rate is one, the delay constraint
is , and the information per unit time is times its rate on
the old scale. Thus,

So the first relation holds with .
Similarly, the relationship for holds for defined
analogously.

Theorem III.2: and satisfy the fol-
lowing scaling relationship for MDC or ADC jamming chan-
nels:

and

for some constants and .
Proof of Theorem III.2:Scale time so that one unit of time

on the new scale is units of time on the old scale and scale
the size of a unit of fluid so that one unit of fluid on the new
scale is equal to units of fluid in the old scale. Then on the
new scale, the arrival rate is, the delay constraint is, and the
information per unit time is times its rate on the old scale.
Thus,

So the first relation holds with . Similarly,
the relation for holds for defined analogously.

Theorem III.3: and satisfy the fol-
lowing scaling relationship for MDC or ADC jamming chan-
nels:

and

for some functions and .
Proof of Theorem III.3:Scale time so that one unit of time

on the new scale is units of time on the old time scale and
scale the size of a unit of fluid so that on the new scale one unit
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of fluid is equal to units of fluid in the old scale. Then on
the new scale, the arrival rate isunits of fluid per unit time,
the delay constraint is, and the information per unit time is
times its rate on the old scale. Under the new scaling, the arrival
rate does not exceedunit of fluid per unit time. Thus,

So the first relation holds with . The re-
lation for holds for defined similarly.

B. Relationship Between Packet and Fluid Models

Before introducing the relationships among the fluid models
and corresponding packet models, we prove the following useful
lemma and state some definitions.

Lemma III.1: Suppose , , , are sets and
and are functions, and suppose for every
there corresponds and for every there corresponds

such that for all and . Then

(5)

and

(6)

Proof of Lemma III.1: Choose any . Then there
exists such that

(7)

since for each there exists such that
. Equation (7) holds for all , so in particular (5)

holds. Similarly, choose any . Then there exists
such that

(8)

since for each there exists such that
. Equation (8) holds for all , so in particular (6)

holds.

Definition III.1: A trigger packetizeris a device that converts
a fluid waveform into the continuous time packet wave-
form . (A trigger packetizer in isolation is not physically
realizable because it advances partial packets. See illustration in
Fig. 5.)

Definition III.2: An accumulate-and-dump packetizeris a
device that converts a fluid waveform into the contin-
uous-time packet waveform . (See illustration in Fig. 6.)

Definition III.3: A fluidizer is a device which converts any
discrete-time packet waveform into a continuous —time, rate-
constrained waveform. A packet arriving at slotis replaced by
fluid flow with rate one on the interval , as shown in
Fig. 7.

Definition III.4: A slotter is a device which converts a con-
tinuous-time packet waveform having no arrivals in into a
discrete-time packet waveform. An arrival at the device at time

Fig. 5. Trigger packetizer.

Fig. 6. Accumulate-and-dump packetizer.

Fig. 7. Fluidizer.

Fig. 8. Slotter.

departs in slot , or the first available slot after that if previous
packets are waiting to be transmitted. The slotter is illustrated in
Fig. 8. (A slotter in isolation is not a physically realizable device
since packets can depart before they arrive).

We use these definitions and Lemma III.1 to show relation-
ships among the various channel models. First we describe the
relationships between the continuous-time packet models and
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Fig. 9. Relationships of transformations,CP � CF with extra delay.

the continuous-time fluid models. Next, we describe the rela-
tionships between the discrete-time packet models and the con-
tinuous-time, rate-constrained fluid models.

Theorem III.4: For ADC jamming channels

and

Proof of Theorem III.4:For an interval of length
and such that , let (short for for con-
tinuous-time packet waveforms) be the set of all rate
input processes for ADC jamming channels for continuous-time
packet waveforms, let be the set of all rate input
processes for ADC jamming channels for continuous-time fluid
waveforms, let be the set of all ADC jamming chan-
nels with delay parameter for continuous-time packet wave-
forms, and let be the set of all ADC jamming channels
with delay parameter for continuous-time fluid waveforms.

For every packet jamming channel , there
exists a fluid jamming channel
obtained by concatenating an accumulate-and-dump packetizer
with the packet jamming channel as shown in Fig. 9.
The resulting fluid jammer is ADC with delay parameter at
most since the accumulate-and-dump packetizer
holds at most one unit of fluid at a time and hence, by Little’s
law, introduces a mean delay of at most . Similarly, for
every rate fluid input process , there exists a rate

packet input process obtained by passing
through an accumulate-and-dump packetizer.

Using the data processing inequality of information theory
(cf. [10, p. 32]), it is easy to see that for any fixed

Then applying Lemma III.1 with representing ,
representing , representing , representing

, and and representing , and
taking appropriate limits, the result is shown.

Theorem III.5: For MDC, MBC, and ADC jamming
channels

Proof of Theorem III.5:To be specific, we show the re-
sult for MDC jamming channels, but essentially the same proof
works for MBC and ADC jamming channels. For an interval

Fig. 10. Relationships of transformations,CF � CP .

of length , let be the set of all rate input pro-
cesses for continuous-time packet waveforms, let be the
set of all rate input processes for continuous-time fluid wave-
forms, let be the set of all MDC jamming channels
with delay parameter for continuous-time packet waveforms,
and let be the set of all MDC jamming channels with
delay parameter for continuous-time fluid waveforms.

Given a fluid jamming channel , there ex-
ists a packet jamming channel , obtained by
concatenating the fluid jamming channel with a trigger
packetizer as in Fig. 10. Since , the fluid jammer
will meet its delay constraints for any packet input process.
In addition, the trigger packetizer advances partial packets and
does not add any delay. While trigger packetizers in general are
not physically realizable, the resulting concatenation of
with a trigger packetizer is realizable for continuous-time packet
inputs. Thus, the concatenation of a fluid jammer with delay pa-
rameter and a trigger packetizer results in a packet jammer
with delay parameter no larger than. Also, for every rate
packet input process , there is a rate fluid input
process , namely, .

Applying the data processing inequality (cf. [10, p. 32]) it is
easy to see that for any fixed time ,

. Then applying Lemma III.1 with repre-
senting , representing , representing ,

representing , and and representing , and
taking appropriate limits, the result is shown.

Corollary III.1: For ADC jamming channels as

and

Proof of Corollary III.1: By the scaling results of The-
orem III.2 we have that for all and ,
for some constant and for some con-
stant . Applying the results of Theorems III.4 and III.5 for
ADC jamming channels, we have that

and

for all and . Thus, and are in the
interval for all and , and the result follows.

Theorem III.6: For ADC jamming channels we have

and
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Fig. 11. Relationships of transformations,DP � RF with extra delay.

Proof of Theorem III.6:For an interval of length
and such that , let be the set of all rate input
processes for discrete-time packet waveforms, let be the
set of all rate input processes for continuous-time, rate-con-
strained fluid waveforms, let be the set of all ADC
jamming channels with delay parameter for discrete-time
packet waveforms, and let be the set of all ADC jam-
ming channels with delay parameter for continuous-time,
rate-constrained fluid waveforms.

For every rate continuous-time, rate-constrained fluid
input process , there exists a rate-discrete packet
input process obtained by passing through
an accumulate-and-dump packetizer. For every packet jamming
channel , there exists a fluid jamming
channel

obtained by concatenating an accumulate-and-dump packetizer
with the packet jamming channel and a fluidizer as in
Fig. 11. The resulting fluid jammer is a continuous-time, rate-
constrained ADC jammer with delay parameter

. To see this note that any continuous-time, rate-constrained
fluid waveform is converted to a discrete-time packet wave-
form by the accumulate-and-dump packetizer and the accumu-
late-and-dump packetizer holds at most one unit of fluid at a
time and hence introduces a mean delay of at most .
The fluidizer introduces a mean delay of at most slot times
since the packet is released at rateduring one slot time.

Applying the data processing inequality [10, p. 32], it is easy
to see that for any fixed time ,

. Then applying Lemma III.1 with repre-
senting , representing , representing ,

representing , and and rep-

resenting , and taking appropriate limits, the result is shown.

Theorem III.7: For MDC, MBC, and ADC jamming chan-
nels we have

and

Proof of Theorem III.7:To be specific, we show the result
for MDC jamming channels, but the proof holds equally for

Fig. 12. Relationships of transformations,RF � DP .

MBC and ADC jamming channels. For an interval of length
, let be the set of all rate- input processes for

discrete-time packet waveforms, let be the set of all
rate- input processes for continuous-time, rate-constrained
fluid waveforms, let be the set of all MDC jamming
channels with delay parameter for discrete-time packet
waveforms, and let be the set of all MDC jam-
ming channels with delay parameter for continuous-time,
rate-constrained fluid waveforms.

For every rate packet input process , there is
a rate fluid input process obtained by passing

through a fluidizer. For every fluid jamming channel
, there exists a packet jamming channel

, obtained by concatenating a fluidizer, the
fluid jamming channel , a trigger packetizer, and a slotter
as shown in Fig. 12. The fluidizer adds exactly unit of
delay to each packet, while the trigger packetizer subtracts at
least unit of delay from each packet-sized unit of fluid.
Taken together, these devices add no additional delay to a
discrete-time packet waveform. For a discrete-time packet
input, the output of the trigger packetizer will have at most one
packet per slot since the jammer enforces at most one
unit of fluid per unit time and the input to the slotter will have
no packets in since . Thus, the slotter only
advances packets to the nearest slot time, so it does not add
any delay. The only delay in the resulting discrete-time packet
jammer is that introduced by fluid jammer and the resulting
delay parameter will be no larger in the discrete-time packet
jammer than in the continuous-time, rate-constrained fluid
jammer.

As before, for any fixed

Then applying Lemma III.1 with representing ,
representing , representing , representing

, and and representing , and taking appropriate
limits, the result is shown.

Corollary III.2: For ADC jamming channels as and
(for example, with fixed)

and

Proof of Corollary III.2: The proof is similar to
that of Corollary III.1. Theorems III.3, III.6, and III.7
imply that and are in the interval

for all and , which concludes the
proof.
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C. Saddle-Point Existence for MDC Jammer for Discrete-Time
Packet Waveforms

In this subsection, we show that for MDC jam-
ming channels for discrete-time packet waveforms (i.e.,

). First we prove two useful lemmas.

Lemma III.2: For MDC jamming channels with delay pa-
rameter and discrete-time packet waveforms, for
all positive integers .

Proof of Lemma III.2: Fix a positive integer. A dis-
crete-time packet waveform on the interval can be repre-
sented by a vector in , such that theth coordinate is one
if a packet arrives in slot. Thus, can be viewed as the set of
probability distributions on such that the mean number
of arrivals satisfies . A probability dis-
tribution on can be expressed as ,
which is an element of , the space of all vectors with
index set . Moreover, is a closed, bounded, convex
subset of . Similarly, let represent the set of condi-
tional probability density functions
satisfying the causality constraints

if , and satisfying

if and violate the maximum delay less than constraint.
Then is a closed, bounded, convex subset of .

Since mutual information is a concave function
of for fixed and a convex function of for

distributed according to , the
classical - theorem (e.g., [22]) implies that

and the result follows.

Lemma III.3: Given a nondecreasing functionon or
and some such that for

all , the limit exists.
Proof of Lemma III.3: Let and let
and . Then

for

which in turn implies that for all and for all
.

Let and let . Select
such that . Then

for all . Since is nondecreasing, this implies that

Therefore, exists, which in turn implies that
exists.

Theorem III.8: For MDC jamming channels with delay pa-
rameter and discrete-time packet waveforms, and a
mutual information rate saddle point exists.

Proof of Theorem III.8:For , let be the set of rate
input processes for discrete-time packet waveforms and let

be the set of MDC jammers for discrete-time packet waveforms.
By Lemma III.2, we have that for all .

Take

Then is clearly nondecreasing. Fix integers . Let

be a maximizing input for and, similarly, let be a max-
imizing input for .

Construct a new input which consists of for the first
time units, a transition for the next time units

(described next), and a translation of for the last time units.
Each of the first slots of the transition interval have an
arriving packet, the next slot has a packet with probability

, and all of the remaining slots of the transition interval have
no packets. The mean arrival rate during the transition interval,
and hence for the whole input, is. Since

there are no packets input for at least slots at the end
of the transition interval. Thus, there are no packets left in the
jammer just after the first slots. Using the notation

, and letting and

(9)

(10)

(11)

(12)

(13)

(14)

where (12) follows since conditioning only decreases entropy
and since is independent of ; and (13)
follows since the transition interval empties the jammer’s
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buffer. Thus, by Lemma III.3, exists and hence
exists. Therefore, .

D. Relationship Between Capacity and

In this subsection, we show that in general .

Theorem III.9: The capacity for a class of MDC, MBC,
or ADC jammers satisfies , where codewords are taken
to be rate codewords, and input processes are rateinput
processes.

Proof of Theorem III.9:The proof is similar to the stan-
dard converse coding theorem for channel capacity. Let
and . Let be the class of MDC, MBC, or ADC jamming
channels. For every and , there exists a sequence
of random codes with , with

for

and with maximum probability of error over all messagesand
over all jammers in converging to zero as .

Since the maximal probability of error converges to zero, the
average probability of error averaged over all messages
for any also converges to zero as . For a
given , let be a message index uniformly distributed over

, and let be a random variable, independent of,
representing the choice of codebook. Consider the input con-
sisting of a codeword depending on the random variablesand
, . Fix and let represent the corresponding

output waveform for jammer up to time . Using the inde-
pendence of and

(15)

(16)

(17)

where (16) follows from the data processing inequality and (17)
follows from Fano’s inequality. Since (17) holds for each

, we have that

Note that for the ADC model. For the MDC
or MBC model, choose a slightly larger time interval
and add to each codeword an appropriate number of packets (or
fluid) in the interval to obtain codewords so the
random input satisfies . Taking limits we get
that for each so that the result follows.

IV. MDC JAMMERS

In this section, we present bounds for and with rate
input processes and MDC jammers. We also show that

Fig. 13. Value of MDC game for continuous-time packet waveforms.

the capacity of an MDC jammer for continuous-time packet
waveforms is equal to the saddle-point information rate and
that codes exist to achieve the rate even when the decoder does
not have access to timing information. The four waveform
types are considered in the same order in this section and in
each of the next two sections.

A. MDC, Continuous-Time Fluid Model

For continuous-time fluid waveforms, the capacity of an
MDC jammer with delay parameter is infinite. This result
can be seen by considering a ratecode with batches every

time units where the batch size is a positive, real-valued
random variable with mean . Since MDC jammers cannot
delay fluid by or more time units, the batch size can be
communicated error-free through any MDC jammer. Since a
positive real-valued random variable can convey an infinite
number of bits, .

B. MDC, Continuous-Time Packet Model

Given , let represent the probability distribu-
tion on the nonnegative integers given by , where

. This distribution has maximum entropy among all
distributions on the nonnegative integers with mean. Let
be a batch-with-spacing- input process such that each batch
size is chosen independently with distribution . We
call a -batch-with-spacing- input process. Let

denote a periodic dump jammer with period.

Theorem IV.1:For MDC jamming channels with delay pa-
rameter and continuous-time packet waveforms,
is a saddle point, and the saddle-point information rate is

(see Fig. 13). Hence is - optimal and
the periodic dump jammer is - optimal.

Proof of Theorem IV.1:It suffices to show that if is the
set of MDC jammers with delay parameterand ,
denotes the rate input processes for , then

(18)

and



2466 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 9, SEPTEMBER 2002

(19)

First we show (18). For any which is an integer mul-
tiple of , and a fixed

(20)

(21)

(22)

where is the initial dump time and is the number of packets
that depart at theth dump time. Equation (21) follows because
under jammer , the output is completely determined by
and , and (22) follows since conditioning only reduces entropy.

Let for each . Then with no other constraints
we have that by the maximum entropy
property of the distribution. Let . The average
number of packets that arrive at the jammer up to timeis

, so , the mean number of packets that depart the
jammer up to time , is at most . Thus, .
It can easily be seen that is convex and monotone
increasing in , so by Jensen’s inequality

Thus, for all and
(18) holds.

On the other hand, note that for any and

(23)

(24)

where (23) follows from the fact that for any jammer delaying
packets by strictly less than time slots, the input up to
time is completely determined by the output up to time

. Equation (24) follows because has independent
batches of arrivals by time . Therefore, (19) is true, and
Theorem IV.1 has been shown.

Next, we show that the capacity of an MDC jammer for con-
tinuous-time packet waveforms is equal to the saddle-point in-
formation rate. Moreover, we show the existence of codes that
achieve the saddle-point information rate, even when the de-
coder does not have access to timing information.

Consider a block timing code with codewords of duration
time units. Each codeword is such that packets are trans-

mitted only at times which are a positive integer multiple of,
so that a codeword can be identified with the vector of batch
sizes . The code will be taken to be the set of all

with nonnegative integer coordinates such that
, , , and ,

Fig. 14. Coding and decoding: decoder does not know time that coder begins
transmitting.

where is a fixed constant specified below. The sum
is called thedelay sumfor the sequence .

We first show that for such codewords, error-free decisions
can be made at the decoder, even without timing information.
Next, we specify the delay sumand show that there are enough
codewords in this code to achieve the saddle-point information
rate.

The decoder works as follows. Let time for the coder be
the time that the first batch is transmitted and let timefor the
decoder be the time that the first packet arrives. To determine the
transmitted batch sizes , the decoder would like to
know , the delay of the first packet received, as in Fig. 14. By
guessing a delay, the decoder can get for eachan estimate
of , denoted , by counting packets in the interval

, as shown in Fig. 14. The codeword in Fig. 14
with satisfies . Note that if

, the estimate of the codeword equals the codeword, and, of
course, the estimate of the codeword has the same delay sumas
the codeword. As a function of, the delay sum of the estimated
codeword is nondecreasing and its jumps mark changes in the
estimated codeword. Thus, the decoder can correctly find the
codeword by adjusting until . For example, for
the shown in Fig. 14, the delay sum of the codeword estimate
is , indicating that is too large. Therefore, a codeword can
be transmitted without error every time units.

Next we specify the delay sum and show that there are
enough codewords to achieve the saddle-point information rate.
Let be the collection of sequences of nonnegative integers

, such that , , and
. Then

(25)

(26)

where and (26) is obtained
from the inequality

[10, p. 151]. For each possible delay sum
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let

We choose , so that is the most common
delay sum. Given any , for large enough, the number of
codewords having delay sumis lower-bounded by

One such codeword can be transmitted without error every
time units, so the rate of the code is at least

Since is arbitrary, for the MDC jamming channel with delay
parameter and continuous time packet waveforms, we have
that

C. MDC, Continuous-Time, Rate-Constrained Fluid Model

The MDC jamming channel for continuous-time, rate-con-
strained fluid waveforms has infinite capacity for the same
reason that the MDC jamming channel for continuous-time fluid
waveforms has infinite capacity. That is, .

D. MDC, Discrete-Time Packet Model

An information rate saddle point has not been found for an
MDC jammer for discrete-time packet waveforms, but have
shown the existence of a saddle point in Section III. We present
upper and lower bounds on the saddle-point information rate,

. The best of these upper and lower bounds are
within a factor of for and the bounds are reasonably
close for as shown for slots in Fig. 15.

First we describe the jamming strategies that give upper
bounds on the maximum saddle-point information rate. Then
we describe the input process that gives a lower bound on the
saddle-point information rate.

An easy upper bound on the saddle-point information rate
comes by using a periodic dump jammer. Using a periodic dump
jammer, the output logically takes a value in at each
dump time, and each packet is delayed by less thanslots. The
mean number of packets per dump time is, and the distri-
bution on with mean having the greatest entropy
is a geometric distribution, denoted , where if is
distributed according to a random variable, then

for

and is chosen so that . Therefore, an upper bound
on the entropy rate of the output of an MDC periodic dump
jammer and hence an upper bound on the saddle-point informa-
tion rate is . The bound is plotted in Fig. 15
for and labeledPeriodic dump jammer with period

.

Fig. 15. Information rate for MDC jammer withD = 2000, for discrete-time
packet waveforms and continuous-time, rate-constrained fluid waveforms.

Fig. 16. Fill-alternating periodic dump jammer.

A tighter bound is provided by considering the following
jammer. Afill-alternating periodic dump jammerwith period
for discrete-time packet waveforms is the following variation of
a periodic dump jammer for discrete-time packets. For , the

th output window is the interval of slots
(i.e., slots through ) where the phase
is uniformly distributed on . In an odd-numbered output
window, the jammer transmits a packet in the first slot of the
window (if it has one to transmit) and it keeps transmitting
packets in each successive slot until either it has no packet to
transmit or until the end of the window is reached. Packets ar-
riving after the first slot may still be transmitted, although if the
jammer is idle in a slot of the window due to a lack of packets,
then it remains idle for the rest of the window. The odd-num-
bered windows are calledfill windows since the jammer is trying
harder to fill those windows with packets. In an even num-
bered window the jammer acts the same way as a periodic dump
jammer: during the window it transmits only packets that arrive
by the first slot of the window. The even-numbered windows are
calleddumpwindows. An example of a fill-alternating periodic
dump jammer is shown in Fig. 16. In effect, a fill window can
“steal” some packets from the subsequent dump window.

The maximum entropy rate for the output of a fill-alternating
periodic dump jammer is an upper bound on the maximum in-
formation rate for the jammer and a rateinput process. Let

be the number of packets transmitted by the jammer during



2468 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 9, SEPTEMBER 2002

Fig. 17. Fill-alternating periodic dump jammer.

the th window, , for all .
Thus, is the number of packets transmitted by the jammer
during the fill window , and

is the number of packets transmitted during the subse-
quent dump window. We now prove that with probability one,

, where

or

Suppose that . It must be shown that
. At least packets arrive during the interval of

slots . Even if these
packets arrive as late as possible, for at least of
these packets arrive by theth slot of the th window, as
shown in Fig. 17, so that , as was to be proved.

The maximum entropy distribution on the setof possible
values for such that
is a geometric distribution truncated tosuch that

for

where is chosen so that . The re-
sulting bound on the saddle-point information rate for an MDC
jammer with slots is shown in Fig. 15 and is labeled
fill-alternating periodic dump jammer. Since the fill-alternating
periodic dump jammer scheme only deviates from the periodic
dump jammer scheme when is relatively large,
the performance of the fill-alternating periodic dump jammer is
noticeably better for arrival rates of about and larger.

A lower bound on the saddle-point information rate is given
by a -batch-with-spacing- input. The
batch sizes for this input range fromto and are chosen inde-
pendently according to random variables such
that for , is an integer satisfying (if ,
no information can be conveyed through timing). Batches are
transmitted one packet per slot in consecutive slots starting at
the beginning of the interval so that there are at least

idle slots between batches. Since the jammer cannot delay
packets by or more time units, the batch sizes can be repro-
duced exactly at the output, and there is one batch per
time units so that the information rate for this input process and
any MDC jammer is at least . Since this is
the information rate for a particular input in and any MDC
jammer, it is a lower bound on the saddle-point information rate.
Fig. 15 illustrates this bound for when is

chosen to maximize the bound for eachand the bound is la-
beledGeo -batch-with-spacing- input.

It should be noted that the lower bound on the saddle-point in-
formation rate obtained from the -batch-with-
spacing- and the upper bound on the saddle-point in-
formation rate obtained from the fill-alternating periodic dump
jammer have roughly the same general shape and that they differ
by a factor of for . Note that the lower bound for

is greater than the upper bound for , implying
that the saddle-point information rate is not symmetric around

.

V. MBC JAMMERS

In this section, we consider an MBC jammer with parameter
that can carry over at most units of traffic in its buffer, with

the unit of traffic being a packet for the packet models.

A. MBC, Continuous-Time Fluid Model

The capacity for MBC jammers for continuous-time fluid
waveforms is infinite. The coder transmits units of fluid
at some time chosen on . Since an MBC jammer can
hold no more than units of fluid, the jammer must immedi-
ately release at least units of fluid at time . Thus, the
decoder learns the real-valued, so an infinite amount of infor-
mation can be conveyed. Therefore,
for the MBC jamming channel for continuous-time fluid wave-
forms.

B. MBC, Continuous-Time Packet Model

Using identical arguments to those in the preceding subsec-
tion, for the MBC jamming channel
for continuous-time packet waveforms.

C. MBC, Continuous-Time, Rate-Constrained Fluid Model

An upper bound on for an MBC jammer is obtained with
the periodic quantized dump jammer with period and quanta
size both equal . If the amount of fluid in the buffer at a
dump time is less than , then the jammer holds the fluid
until the next dump time, and at most additional units of
fluid can arrive by the next dump time since the input is limited
to rate . If instead the amount of fluid in the buffer is greater
than or equal to at a given dump time, then the jammer will
release fluid at rate until the next dump time. Since the input
is limited to rate during this interval, the fluid level cannot
increase. Since the buffer is initially empty, the fluid level in
the jammer’s buffer will never exceed units and the jamming
strategy is MBC for continuous-time, rate-constrained inputs.

The jammer’s output is logically one of two symbols every
time units, regardless of the input process. The information

rate for any rate input process and this MBC jamming strategy
is upper-bounded by the maximum entropy rate of the jammer’s
output, . Hence, an upper bound on is given by

.
We show in the following subsection that capacity for the

MBC jamming channel for discrete-time packet waveforms is
lower-bounded by . We can achieve the same rate for con-
tinuous-time, rate-constrained fluid waveforms by treating the
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Fig. 18. Bounds on information rate for MBC jammers,B = 2000.

fluid as packets and placing a trigger packetizer and slotter at
the jammer output (start the rate-constrained waveform at time
). Thus, for the MBC jamming channel for

continuous time, rate-constrained fluid waveforms.

D. MBC, Discrete-Time Packet Model

Upper bounds on and lower bounds on for MBC
jamming channels are presented in this subsection and are il-
lustrated in Fig. 18. The upper and lower bounds that we have
found are within a factor of of each other for all values of.

Let denote the set of MBC jammers for discrete-time
packet waveforms and assume that the jammer buffer is always
initially empty. Let be the set of rate discrete-time packet
waveforms.

An upper bound on for an MBC jammer is obtained
with the periodic quantized dump jammer with period and
number of packets per quanta both equal to . Let

which is the th dump slot. If the jammer has or fewer
packets in its buffer at including the arrival in that slot, then
the jammer holds all packets until and at most packets
will be in the jammer just before . If, instead, the jammer
has more than packets in its buffer at , then the jammer
will release one packet in each slot during the period from
to just before and the total buffer size will not increase
before . Hence, this jamming strategy will never hold over
more than packets and it is an MBC jamming strategy. The
jammer output is either or packets in a in-
terval, so the output can be considered a discrete binary process
taking values or at each . The entropy rate for the
output will be maximized if the outputs at the dump slots are
independent. The mean number that should depart at eachis

since the arrival rate is. Hence, the output en-
tropy rate and therefore the - information rate for the
channel model, is upper-bounded as .
The bound is illustrated in Fig. 18 for packets and is
labeledperiodic quantized dump jammer.

A simple lower bound on is obtained with the following
batch-with-spacing- process. Time is divided into super-
slots consisting of consecutive slots. In each super-
slot, the encoder with probability transmits a binary
by not sending any packets, and otherwise it transmits a binary

by filling the super-slot with packet transmissions. We
will show that the input is determined by the jammer output.
The decoder makes hard decisions at the end of each super-
slot. We define outstanding packets as any packets sent by the
encoder, but not yet received by the decoder. We claim that at
each decision time, the decoder has sufficient information to
make the correct hard decision and to determine the number
of outstanding packets. The proof is by induction. If the first
transmitted bit is a zero, then zero packets are output in the first
super-slot. If the first transmitted bit is a one, then at least one
packet is transmitted in the first super-slot. Thus, the claim is
true for the first decision time . Suppose the claim is true
for the th decision time. In particular, the decoder knows the
number of outstanding packets at theth decision time. If the
encoder sends a binary in the th super-slot, then the
jammer must output or fewer packets in the th super-slot.
If the encoder sends a binaryin the th super-slot, then
the jammer must output at least packets in the th
super-slot. Thus, at the end of the th super-slot, the decoder
will know the information bit sent during the th super-slot.
Using that knowledge, together with knowingand the number
of packets input during the th super-slot, the decoder can
calculate the number of outstanding packets. Thus, the proof of
the claim by induction is concluded. Since the decoder receives
one error-free binary symbol every slots and the arrival
rate is , we have that both and are lower bounded
by . This lower bound differs from the upper bound by a
factor of and is illustrated in Fig. 18 with the labelbatch-with-
spacing- -decoder-with-memory inputfor .

To close this subsection, we explore another philosophy for
jammers. The idea is for the jammer to try to make the output
process as random as possible. For example, the jammer might
like to output a stream of independent, meanBernoulli vari-
ables, regardless of the input. Of course, this is not possible since
the buffer can become full or empty. A reasonable fix would
be for the jammer to adjust the output probability as a func-
tion of the buffer size. For example, consider a jammer that in
any slot outputs a packet with probability , where is the
number of packets in the buffer at the beginning of the slot, in-
cluding the new arrival, if any. However, this is apparently not a
good jammer strategy, at least forlarge. Indeed, this jammer
is equivalent to the generalized billiard ball channel of Berger
[5].

In Berger’s model, the coder adds a red or white ball to a bil-
liard table at the beginning of each slot, and the channel output
is a ball selected from the table, with all balls having equal
probability. The equivalence can be seen by mapping slots with
packets to red balls, and idle slots to white balls. It can be shown
[6] that for large the capacity of the channel is at least as
large as a constant times . For large , this far exceeds
the capacity upper bound for the periodic quantized dump
jammer described above. Roughly speaking, the generalized bil-
liard ball channel can allow the coder to reliably convey infor-
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mation by causing small fluctuations in buffer size over short
time intervals.

VI. ADC JAMMERS

The class of ADC jammers is considered in this section.

A. ADC, Continuous-Time Fluid Model

By Theorem III.2, and are each given by a con-
stant divided by . The upper bound on and the lower
bound on that are obtained for the strategies we present
differ by a factor of about .

Choose such that and consider the class of
rate input processes . An upper bound on for
an ADC jammer is obtained with a periodic quantized dump
jammer with period , quantized to , where

, and . The constant is chosen to obtain the
smallest upper bound. Note thatthe jammer must know for
this strategy. We will first show that a periodic quantized dump
jammer with period , quantized to , is an ADC jammer
for continuous-time fluid waveforms.

For a drop of fluid, the time it spends in the system can
be broken into two parts: 1) an initial delay equal to the time
from its arrival until the first dump time after its arrival, and
2) a carryover delay equal to the time that the fluid waits from
the first dump time until the last dump time that the fluid is in
the system. Since the spacing between dump times is, the
largest amount of initial delay experienced by a drop of fluid is

. The average amount of type 2 delay experienced by a drop
of fluid is at most by Little’s law, since less than
units of carryover fluid is in the buffer at any time. Therefore,
the mean delay experienced by fluid is at most
time units.

The maximum information rate for a rateinput process and
the periodic quantized dump jammer is upper-bounded by the
maximum jammer output entropy rate. The jammer has batch
outputs every time units where the batch size isor a posi-
tive integer multiple of . The average batch size must be at
most units of fluid since the batches occur every
time units and the packet input rate is at most . Arguing
as in the proof of Theorem IV.1 yields that the maximum output
entropy rate for a periodic quantized dump jammer with period

, quantized to is given by .
Minimizing this expression with respect toand taking the limit
as tends to yields an upper bound for . The optimizing

tends to , and the bound is

4 bits
(27)

Theorem III.5 guarantees that (27) is also an upper bound on
for ADC jamming channels.

Many of our best input processes attempt to force the output
to allow good prediction of the input at the expense of using
input processes that are closer to deterministic, especially with
respect to timing. Our best input process for an ADC jammer for
continuous-time fluid waveforms, however, takes the opposite
approach and selects fluid departure times at random. We first
state the following theorem which is proved in the Appendix.

Fig. 19. Normalized information rate (bits/unit delay) for an ADC jammer,
with continuous-time packet waveforms or continuous-time fluid waveforms.

Theorem VI.1:Assume continuous-time packet waveforms
or continuous-time fluid waveforms. Given , let be
a Poisson-like input with batch sizewith packet arrival rate

, and let be a class of ADC jamming channels
on . Then

(28)

where can be chosen to maximize the bound. The batch
size may be chosen to be any real-valued, positive number in
the continuous-time fluid model. Taking and

(29)

bits
(30)

which holds for all with optimum batch size .
The bound of (30) is illustrated in Fig. 19 of Section VI-B and
is labeledPoisson-like input with real batch size.

B. ADC, Continuous-Time Packet Model

An MDC jammer for maximum delay is also an ADC
jammer for average delay . In particular, a periodic dump
jammer with period satisfies the MDC constraint. Therefore,
a slight modification of the proof of Theorem IV.1 to account
for the ADC input constraints, implies that

Another upper bound was already mentioned in Sec-
tion VI-A. A jammer that quantizes output batch sizes (using
knowledge of the input rate) yields . The
two upper bounds are pictured in Fig. 19. The periodic jump
jammer gives the tighter bound for small , whereas for large

, when batches tend to be large, a jammer that quantizes
output batch sizes is better.
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For a lower bound on , we can use the Poisson-like-
input with batch size from Section VI-A with batch size
an integer. More precisely, select an integer to minimize
the right-hand side of (28). This lower bound is illustrated in
Fig. 19 and is labeledPoisson-like input with integer batch size.

C. ADC, Continuous-Time, Rate-Constrained Fluid Model

An upper bound on for an ADC jammer is obtained with
a periodic quantized dump jammer with period , quantized
to similar to that of Section VI-A, where and are care-
fully chosen constants depending onand such that
is an integer , and . For this
strategy, we assume that the jammerknows the nominal rate
of the input process. We will first show that such a jammer is
ADC and then give an upper bound on the maximum informa-
tion rate for this jammer.

The average delay experienced by fluid in this jammer can
be obtained in the following way. For a drop of fluid, the time
it spends in the system can be broken into three parts: 1) the
time from its arrival until the first dump time, 2) the time from
the first dump time until the last dump time the fluid is in the
system (this is the carryover period for the drop of fluid), and
3) the time from the last dump time until the departure of the
drop of fluid. The type 1 delay is at most time units since
dump times have spacing . The average type 2 delay is at
most by Little’s law, since, the amount of fluid carried
between any two dump times is less than , and the arrival
rate is at least . Finally, the type 3 delay for the drop of
fluid is on average at most since the drop may depart at any
time in the interval. Thus, the mean delay is at most

so the jamming scheme is ADC.
The mean number of quanta of size transmitted at each

dump time is at most

and the largest number of quanta that can be transmitted is at
most

Arguing as in the proof of Theorem IV.1 yields

(31)

By Theorem III.7, so the bound in (31) also holds
for discrete-time packet waveforms. The bound in (31) is illus-
trated for in Fig. 21 of Section VI-D for optimal and

and is labeledperiodic quantized dump jammer with period
, jammer knows .

To obtain a lower bound on , we use a Bernoulli-like-
input with batch size . The following theorem is proved in the
Appendix.

Theorem VI.2:Assume continuous-time, rate-constrained
fluid waveforms or discrete-time packet waveforms. Given

and with an integer, let be a
Bernoulli-like-input with batch size over with

Fig. 20. Symbol errors caused by delay.

packet arrival rate and let be the class of ADC
jamming channels. Then for each ,

(32)

where .

For continuous-time, rate-constrained fluid waveforms, we
may choose the batch sizeto be real-valued. Maximizing (32)
with respect to and , we obtain a lower bound on
which is illustrated in Fig. 21 of Section VI-D and is labeled
Bernoulli-like input with real-valued batch size.

Next, we present a coding scheme that gives a lower bound
on capacity for an ADC jamming channel for continuous-time,
rate-constrained fluid waveforms.

For this coding scheme, we take a time interval of length
to represent a single channel use, and assume . To send
a binary , we transmit units of fluid in the interval,
and to transmit a binary we transmit zero units of fluid in
an interval. The decoder decides that awas transmitted if
it sees units of fluid or more in an interval, and a was
transmitted if it sees less than units of fluid. Note that we
are assuming the coder and decoder have access to a common
clock.

Given a large even integer, the set of codewords is a subset
of the length binary sequences with normalized weight (frac-
tion of ’s) equal to . The code waveforms have duration

. The decoder makes symbol-by-symbol decisions, and then
the resulting received binary sequence is decoded to the nearest
codeword. As illustrated in Fig. 20, if an amount of fluid
is delayed by time units, then two bit errors can re-
sult. The product of the amount of fluid moved and the delay is

. No output with smaller fluid-delay product
can cause an error. Moreover, any number of errors would re-
quire a total fluid-delay product of at least per
error. On the other hand, the ADC constraint ensures that there
is at most fluid delay per codeword, so the number of
errors per codeword is at most .

By choosing the set of codewords so that the minimum dis-
tance of the code is at least twice the maximum number of er-
rors per codeword, the decoder can make error-free minimum
distance decisions. The Gilbert–Varshamov bound guarantees
that for large enough, a binary code with relative weight

, rate , and minimum distance exists, provided
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Fig. 21. Information rate for and ADC jammer withD = 8, for discrete-time
packet waveforms or continuous-time, rate-constrained fluid waveforms.

. Then taking , for and large
enough, we choose a collection of such codewords from the
collection of binary sequences, where

Since symbols can be transmitted without error every
time units

(33)

for ADC jammers. The time length for a symbolcan be chosen
to maximize the bound in (33).

A slight improvement to this bound on capacity can be made
by choosing codewords with relative weight and
transmitting a binary using units of fluid in an interval
with probability and a with no fluid in an interval with
probability . We obtain a lower bound depending on,

, , and which makes use of a version of the Gilbert–Var-
shamov bound for weighted codewords that guarantees, for
large enough, a binary code with relative weight, rate , and
minimum distance exists, provided

The bound can then be optimized overand and is nonzero
for . The weight version of the bound is illus-
trated in Fig. 21 of Section VI-D for slots and is labeled
Gilbert–Varshamov.

D. ADC, Discrete-Time Packet Model

In this subsection we give the jamming strategies and input
processes for ADC jammers for the discrete-time packet
waveforms. The bounds for the discrete-time packet waveforms
and continuous-time, rate-constrained fluid waveforms are
illustrated in Fig. 21 for slots.

An MDC jammer is an ADC jammer. In particular, the upper
bound on for MDC jammers obtained in Section IV-D

by consideration of a fill-alternating periodic dump jammer in
Section IV-D is also an upper bound on for ADC jammers.

In addition, from Theorem III.7, any upper bound on for
an ADC jammer is an upper bound on for an ADC jammer.
Thus, for the case whenthe jammer knows the input packet
transmission rate , we may use the periodic quantized dump
jammer with period , quantized to jamming strategy
of Section VI-C by preceding that jammer with a fluidizer and
following the jammer with a trigger packetizer and slotter as in
Fig. 7.

For a lower bound on , we can use the Bernoulli-like
input with batch size , discussed in Section VI-C, where
is taken to be an integer. Maximizing the bound of (32) with
respect to and where is an integer, we obtain the corre-
sponding lower bound which is illustrated in Fig. 21 for
slots labeledBernoulli-like input with integer-valued batch size.

VII. D ISCUSSION

In this section, we summarize the results. In particular, we
give rules of thumb for jammers, rules of thumb for inputs, and
numerical examples. In addition, we discuss the use of the ideas
from this paper in developing timing channel coding schemes
for use on the Internet.

A. Summary of Results

Table I summarizes all of the jammed timing channel models
that are considered in this paper. In the table, the asymptotic be-
havior for the saddle-point information rate (if a saddle point
exists) and for capacity is described in terms of standard-no-
tation where represents the set of functions

there exists such that

for all

Table II summarizes the good jamming strategies we have
found for each of the jamming channel models and Table III
summarizes the good input strategies we have found for each of
the jamming channel models.

In every model considered, the best jammers that we have
found are those that have some sort of quantized batch depar-
tures at regular intervals. By only allowing outputs at regular
intervals, the jammers eliminate much of the output uncertainty
derived from timing. By requiring quantized output, the jam-
mers eliminate much of the output uncertainty derived from
variations in the output intensity.

Since jammers of this type are generally deterministic, the in-
formation rate between a particular coding scheme input and the
output of the jammer is given by the output entropy rate. Such
a jammer would want to make the output entropy as small as
possible, and thus, quantized batches at regular intervals make
sense.

For many of the waveforms and jammer constraints consid-
ered, the best inputs and coding strategies that we have found
are those that have batch arrivals at regular intervals. If infor-
mation were encoded in the input on a finer time scale it would
be easily concealed by a jammer anyway. Another benefit of
these batch strategies is that by spacing the batches at regular
intervals with large enough spacing between batches, error-free



GILES AND HAJEK: AN INFORMATION-THEORETIC AND GAME-THEORETIC STUDY OF TIMING CHANNELS 2473

TABLE I
SUMMARY OF CAPACITY AND INFORMATION RATE RESULTS

TABLE II
SUMMARY OF JAMMER USAGE

decoding can often occur in the case of MDC or MBC jammers.
Thus, the information rate between the input and output is equal
to the entropy rate of the input and we can select batch strategies
with maximum entropy.

For ADC jamming channels, the best strategies that we
have found use quantized batch arrivals, but the batch times
are chosen randomly rather than occurring at deterministic,
regularly spaced times. However, we cannot say with much
confidence that this type of input is good for ADC jamming
channels (especially for discrete packet waveforms) since the
gap between the upper and lower bounds is so large.

B. Numerical Example

Suppose a transmitter tries to covertly use packet timing over
a 100-Mb/s link with 10 000 bit packets. For simplicity, assume

no other traffic is on the link, and that discrete-time packet wave-
forms are used with time divided into intervals of length 10s
each. In addition, assume that any delay introduced beyond that
introduced by a jammer is known to both the transmitter and re-
ceiver. Take the long-run transmission rate to be , cor-
responding to a base packet channel bit rate of 33.3 Mb/s. The
capacity of this timing channelwithout a jammeris given by

10 9200 b/s, corresponding to a transmitter that
transmits a packet in each slot with probability , indepen-
dently of other slots.

Sections IV-B–VI-B provide upper bounds on and lower
bounds on for various constraints on the jammer. For rate
input processes and MDC jammers with maximum delays 2 ms,
20 ms, 200 ms, and 2 s, MBC jammers with maximum buffer
sizes 20, 200, 2000, and 20 000, and ADC jammers with av-
erage delays 2 ms, 20 ms, 200 ms, and 2 s, we present bounds
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TABLE III
SUMMARY OF INPUT USAGE

TABLE IV
DISCRETE-TIME NUMERICAL EXAMPLE (100-Mb/s LINK, 33.3-Mb/s HOST STREAM BIT RATE, 10 000 BITS/PACKET)

in Table IV. Note that the delays correspond to 20, 200, 2000,
and 20 000 slots since the slots are 10s. The results show,
for example, that for an MDC jammer with maximum delay of
20 ms, jamming strategies exist for which no coding strategy
can exceed 358 b/s through the jammer. Additionally, for rate

coders and MDC jammers with maximum delay 20 ms,
coding strategies exist for which at least 188 b/s can be trans-
mitted, regardless of the particular choice of MDC jamming
strategy. Thus, if saddle-point strategies exist for this example,
the saddle-point information rate with such strategies is between
188 and 358 b/s for MDC jammers with maximum delay 20 ms
and link utilization of .

As can be seen from the table, for relatively small delay or
small buffers, the maximum rate at which information can be
transmitted using the timing channel in the presence of good
jammers is reduced significantly.

C. Conclusions

The primary conclusion of this work is that timing channel
jammers which use batching and quantizing schemes with de-
terministic batch departure times generally perform well for the
models considered. One such jammer channel and a batch input
process with deterministic batch arrival times were shown to be

a saddle point for an MDC jammer for continuous-time packet
waveforms. In addition, for all of the other models considered,
reasonably tight bounds on the information rate for saddle points
have been provided. In many cases, channel capacity has been
bounded and relationships among, , and have been illus-
trated. Table I in Section VII-A summarizes the results.

D. Further Research

We list potential areas of further research below.

• Tighten bounds for existing models. We have found
a saddle point only for the MDC jammer for contin-
uous-time packet waveforms.

• Investigate other versions of the jammed timing channel
problem. There are many other versions of the delay
channel problem we can investigate. For example, we
could consider other input classes such as the
upper constrained inputs [11].

• Consider a statistical model for jammers. Investigate the
timing channel for statistical jammers, such as the Pump
[29], [20].

• Investigate other covert channels. Embedding informa-
tion in timing is one of many ways that information may
be hidden. For packet channels, there are many ways
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that information may be hidden such as modulating the
packet length, modifying packet headers, or purposely
introducing bit errors.

• Implementations. A covert timing channel jammer could
be implemented for Internet traffic. Such a jammer could
be incorporated into a network firewall.

APPENDIX

A. Proof of Theorem VI.1

By construction, the number of batches in the inputis
given by . Since batches are transmitted instan-
taneously and the batch sizes are the same, only the batch trans-
mission times are informative. Denote the arrival times of the
batches of as . Let represent the output
of some when is the input (first pass the jammer
output through a trigger packetizer that groups fluid into-sized
“packets”). Without loss of generality, we assume allpackets
are output by time . Thus, the output can be represented by
the batch arrival times of the output .

Let

The joint density for is given by on and
zero outside by the input construction. Thus, the entropy of

relative to the Lebesgue measure on is given by

Now let . Think of as a particular output for some
jammer in and some input . Let

for some

Then represents the set of inputs infor which is a valid
output under some jammer in . The distribution supported
by with the greatest relative entropy is the uniform distribu-
tion over the set. Thus, since
is the relative entropy of a uniform distribution on . There-
fore, we have that

Fix an output and let be independent
uniform random variables on . We have that

(34)

where is the indicator function taking valueif is true
and otherwise, with

Equation (34) follows because . Let
represent a vector of independent, expo-

nential random variables with common mean . The joint
density of restricted to satisfies

Therefore, on this set, so (set
)

(35)

(36)

(37)

where (35) follows because the event
can be rewritten as and the
event

simply implies a random upper bound on that is indepen-
dent of and so that . Equation
(36) follows by Jensen’s Inequality because is
concave in and (37) follows because .
Since this bound does not depend onwe have that

Therefore, we have that
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Using a Stirling bound ( ), we
have that

Substituting and taking appropriate limits yields
(28).

B. Proof of Theorem VI.2

The proof of Theorem VI.2 closely follows the proof of The-
orem VI.1. Each batch is of sizeand there are
batches in the input . The slots are divided into super-
slots, where either no packets or a complete batch ofpackets
is transmitted in each super-slot. Only the transmission times of
the batches are informative, and we write, for
the super-slot in which theth batch is transmitted.

Let represent an output process for inputand a jammer
in . Since packets are sent in complete batches, it is to the
jammer’s advantage to keep packets in the batch together while
respecting super-slot boundaries. Without loss of generality,
we assume that the output of the jammer is in that form since
a trigger packetizer which groups packets into batches and a
slotter which aligns batches with super-slot boundaries could
be used at the jammer output. Similarly, since the decoder
knows that all batches are input to the jammer by time, it
is to the jammer’s advantage to output all batches by time

. Let represent the departure super-slot of theth output
batch. Thus, both and are distributed in the set

We will use the fact that . Since
is uniformly distributed over , given any , if is

sufficiently large then

(38)

Given , let . Then
. For and

(39)

Given , let , where the ’s are
mutually independent and for .
On the set , the probability mass function

satisfies

(40)

Multiplying each term in (39) by the left-hand side of (40) yields

For

where . Also, .
The function is concave in for , so arguing
as in the proof of Theorem VI.1 yields

(41)

Combining (38) and (41) yields that for sufficiently large

Taking appropriate limits yields (32), which can be optimized
with respect to and .

C. Jammers Satisfying Relaxed ADC Constraints

The particularly strict constraints considered for ADC jam-
ming channels were chosen for technical reasons (for example,
so that ). Looser constraints for ADC jamming chan-
nels are that for any , inputs are in the class

, where is the number of packets
up to time and jammers are in the class

where is the delay added to theth packet. These relaxed
constraints allow us to consider a periodic dump jammer with
period as an ADC jamming channel with delay parameter
rather than being restricted to spacing. In this appendix, we
discuss jammers and inputs for these ADC jamming channels
under these relaxed constraints.

As can be seen in Theorem IV.1, the maximum information
rate for the periodic dump jammer with period is given
by . The -batch-with-spacing-
and thecompound-Poisson inputmaximize the information
through a periodic dump jammer with period . The com-
pound-Poisson input transmits batches of packets at times
chosen according to a Poisson process with rate, where the
batch sizes are distributed according to

and

with a mean batch size of.
Another jamming channel is thePoisson random ruler,

which is based on a collection of dump times chosen according
to a Poisson process where all packets in the buffer at a dump
time are released. In this setting, the arrival rate for the Poisson
process is so that the average delay for packets passing
through the jammer is . An upper bound on the information
rate for this jammer is , which is also the maximum
information rate for a periodic dump jammer with period.

A memoryless server queue jammer satisfies the delay
constraints assuming a Poisson input process. Anantharam and
Verdú [3] discuss a memoryless server queue as a delay jammer.
The drawback of this jammer is that there is no guarantee on
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Fig. 22. Bounds on normalized information rate (bits/delay) for relaxed ADC
jamming channels.

the maximum or average delay for most inputs. However, for
the Poisson input, we can choose the service rate of the queue
based on the arrival rate and the desired average delay. The
information rate for the queue is given by .

Under the relaxed ADC constraints, we can consider a
Poisson input rather than the Poisson-like input. The lower
bound for the Poisson input is the same in this case.

Bounds on - and - information rate for these
jammers and inputs are plotted in Fig. 22. In particular, note the
gap between the lower bound on the minimum information rate
for the Poisson input, and the maximum rate for the periodic
dump jammer with period . Assuming no duality gap, the
value of the game is between these two bounds. Also note the
difference between the periodic dump jammer with period
which can only be used for the relaxed ADC constraints, and
the periodic dump jammer with period which works for the
regular ADC constraints.
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