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Abstract—This paper focuses on jammed timing channels. Pure Bob
delay jammers with a maximum delay constraint, an average delay 2] (kH{e[7] (s}
constraint, or a maximum buffer size constraint are explored, M|~~~ Y | 4~
for continuous-time or discrete-time packet waveforms. Fluid 4 0o 2 1o 3
waveform approximations of each of these classes of waveforms T £ R Cc B 5
are employed to aid in analysis. Channel capacity is defined and Transmits: SECRET using CODE: 3=8.0=F. 1= C.2=R.4=T
an information-theoretic game based on mutual information
rate is studied. Min-max optimal jammers and max-min . Transmission Direction .
optimal input processes are sought. Bounds on thmin—-max and g o e Tx el
max—min mutual information rates are described, and numerical : L i O
examples are given. For maximum-delay-constrained (MDC) jam- S LY N T
mers with continuous-time packet waveforms, saddle-point input ~ Reseives: SECReT: s e e :
and jammer strategies are identified. The capacity of the max-
imum-delay constrained jamming channel with continuous-time Fig. 1. Motivating example.
packet waveforms is shown to equal the mutual information rate
of the saddle point. For MDC jammers with discrete-time packet — Teansmission Diretion
waveforms, saddle-point strategies are shown to exist. Jammers 0 Gl ! James
which have quantized batch departures at regular intervals are N TN Y| N (acty device
shown to perform well. Input processes with batches at regular s o 2 1 o 3
intervals perform well for MDC or maximum-buffer-size-con- T ER O C B8
Stralned Jammers Transmits: SECRET using CODE: 3=8,0=E. 1=C,2=R.4=T

Index Terms—Channel coding, covert timing channels, jam- ision Ditesion
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I. INTRODUCTION Recsives: SRECCS . e e

ACKET timing channels can sometimes be used to CONVRY, 2 Motivating example.

covert messages. For example, as shown in Fig. 1, Bob can
transmit packets containing innocuous messages to Alice whilecgyert timing channels can exist due to processor sharing on
transmitting secret messages using packet timing. While th&jngle machine, shared message buffers, or standard network
channel may be naturally noisy due to delays in the underlyiggnnections. In a typical covert channel scenario, a trusted user
packet channel; it still might be possible for Bob and Alice tQith access to sensitive data passes the data to a user who does
communicate at a high data rate using timing. Even if the COfot have access to the sensitive data by using a shared resource
munication is monitored, a secret message may be overlookgd.a covert channel. The trusted user may be unaware that data

We define a covert channel to be any channel used for CO[@heing passed if he is running a program containing a Trojan

munication that is either not intended to be used for commygge.
nication or that is intended to be used in a fundamentally dif- Taking the viewpoint of a security authority who expects to
ferent way. Acovert timing channe a covert channel that usesye gple to monitor all communications on a given packet com-

timing to convey information. See [32] for a collection of othepynications system, the existence of this covert packet timing

definitions. channel may be undesirable. In particular, the complexity of
monitoring all possible ways in which information can be con-
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circumvent packet monitoring systems may be desirable. O
course, encryption is a straightforward way to attempt privacy,
but encryption can draw attention and can be compromiser
with sufficient effort. The use of a packet timing channel,
possibly with encryption, may be a way to communicate ““+r—v—F—1——"—— ——— T
privately WlthOUt draWing attention. Continuous time packet (CP) waveform Discrete time packet (DP) waveform
The goal of this work is to develop good jamming and coding
strategies for timing channels and to find bounds on the informa
tion leakage under such strategies. We assume that all noise
the timing channel is introduced by an intelligent jammer, since
the capacity of a timing channel with naturally occurring delay
is at least as large as the capacity of a jammer timing channe ——— O —
assuming the same reasonable constraints on the jammer.  Continuous time fluid (CF) waveform Continuous time, rate~constrained fluid
Perhaps Gallager [16] was the first to study the information (K waelom
that packets can convey beyond the information within the trgig. 3. Typical waveforms for various waveform classes.
ditional data portion of the packets. There is a literature on
covert communication through timing channels [3], [4], [17]ative real line withA(0) = 0. Fort > 0, A(t) represents
[19]-[21], [26]-{31], [33], [35], [36], [38] and through storagethe number of packets that arrive in the interiéal?]. Multiple
channels [9], [33], [37]. Coverttiming channels present a uniqggckets can arrive simultaneously for the continuous-time wave-
security problem in that there is no apparent way to completglyrms.
eliminate them in a reliable communication system (e.g., [30]). A discrete-time packet waveforrhis a function on the non-
As a method to combat covert timing channels, Hu [19] preregative integers such thda{0) = 0 andA(k) — Ak — 1) €
poses to make all clocks available to user processes on cqm-1} for all k£ > 1. Throughput this paper, when discrete-time
puters noisy. models are concerned, for an integet> 1, slotk means the
One computer can covertly communicate to another Bame astimé. Forinteget: > 1, A(k) is the number of packets
modulating the timing of acknowledgment packets. Kang anfat arrive in slots 1 through, and A(k) — A(k — 1) is the
Moskowitz [20] introduced a mechanism that reduces thgimber of packets, either zero or one, that arrive in/sldthe
capacity of this channel by smoothing and randomizing thestriction of at most one packet arrival per slot introduces a
delay of acknowledgment packets. Venkatraman and Woltgver bound on inter-packet spacing.
[38] discuss estimation of the capacity of a covert channel usingTwo more classes of waveforms are defined to aid in
an adaptive scheduling policy and they discuss the auditabiliyalysis. Acontinuous-time fluid waveform is a right-con-
of network covert channels based on changes in traffic volumiguous, nondecreasing function on the nonnegative real line
over time. with A(0) = 0. Such waveforms can be obtained from the
The work of Anantharam and Verdu [3] and Bedekar angtiginal continuous-time packet waveforms by letting the
Azizoglu [4] can be viewed as a study of queues as timing noipacket size converge to zero. Similarly,cantinuous-time,
devices. Sundaresan and Verdu [35] found how to minimize thgte-constrained fluid waveform is a continuous-time fluid
capacity of a timing channel consisting of a single server quewgaveform such thati(¢) — A(s) < ¢t — sfor 0 < s < t. These
They constrained the packet service times, rather than the tatalveforms are obtained from the original discrete-time packet
delay through the queue. waveforms by letting the packet size and slot size converge
The remainder of the paper is organized as follows. Sectiorntdl zero together. Given a fluid wavefors, anda > 0, let
presents the channel models and assumptions, and introduceg:) = inf{t: A(t) > a}, so thatl’s(a) is the time by which
two generic jamming channels and two generic input processgsinits of fluid arrive for waveformi.
Section Ill presents relationships among the various channeflypical input waveforms for the various waveform classes
models and gives a capacity bound. Sections IV-VI considgre provided in Fig. 3. Note that the waveforms do not include
the strategies applied to timing channels in the presence of japacket sequence numbers. This reflects our focus on packet
mers with a maximum delay constraint, jammers with a magming rather than on bits within the packets. In particular, we
imum buffer size constraint, and jammers with an average delgy not permit the transmitter to code covert information by
constraint, respectively. Discussion, examples, conclusions, asihg out-of-order sequence numbers, so the jammer has no
ideas for future research are provided in Section VII. Proofs @icentive to reorder packets. Waveforms of a finite duration
two theorems and additional information about jammers with an are frequently considered in the paper. Those are either
average delay constraint are given in the Appendix. continuous-time waveforms defined over the interval of time
[0, T, or discrete-time waveforms defined over a finite interval
in discrete time{0, 1, ..., T}.
Ideally, we would like to say something about actual codes
Waveforms representing cumulative arrivals are used in tldad jamming strategies. That is, for a particular class of jam-
paper to describe the input or output of a covert packet timimging strategies, we would like to find codes of high rate, with
channel. Acontinuous-time packet waveformis a right-con- arbitrarily small probability of decoding error when passed
tinuous, nondecreasing, integer-valued function on the nonndélgrough a jammer. In addition, we would like to understand the

{max slope 1)

Il. PROBLEM FORMULATION
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most effective jamming strategies in a particular class. Thighere X(T") is the number of arrivals up to timE and D; is

view of the problem is called theoding framework the delay of theth packet. Similarly, for fluid waveforms, given
An (M, T) codeconsists of an indexed set 8f waveforms the lengthl” of a code to be used, a jammer is ADC with delay

of durationT, {Xy, ..., Xps}, and a mappingp from the parameteD if wheneverX(7T") > 0,

set of duration” waveforms to{0, 1, ..., M}. The set

{X1, ..., X} is the set of codewords, is the decoder, and 1 X(T)

decoder outpué denotes an erasure. The rate of such a code X / (Ty (a) —Tx(a))da < D

is & log M. (T) Jamo

Let )V represent a class of jammers anddet 0. Arate R \yhereY is the output waveform. When the delay parameter
is achievableby randomized codes for arrival ratecodewords g not explicitly stated, the parametér is used for MDC and
and the jammer clasd/’ if for any ¢ > 0 there exists a sequenceapc jamming channels and the paramefeis used for MBC
qf random(M, T') codes such that the following three Propefamming channels.
ties hold: The coder and the decoder are aware of the particular delay
i) % logM > R — eforall T; constraints placed on the jammer, but are not aware of the actual
i) P (‘ XmT(T) B )\‘ < C) — 1. forall T andl < m < M: strategy used by the jammer. In the case of an maX|mu_m-deIay
constraint, for example, the coder and the decoder will know
iii) the maximal probability of decoding error over all jam-that there is a maximum-delay constraint for the jammer and
mers in the class and over all codewords converges to zeilgo know the value of the maximum delay. The coder does not
asT — co. receive feedback from the decoder. In practice, if the delay con-
ThecapacityC for W and\ is the supremum of such rat&  straints are unknown to the coder and the decoder, they can make
We assume that a jammer can choose any causal det@pservative assumptions. For example, in the case of a max-
strategy, including strategies that change packet orderifigfum-delay constraint, the coder and the decoder can assume a
subject to constraints on the delay. The jamming strategy daarticular maximum delay, and as long as the actual maximum
be deterministic, or it can be random with memory. Howevegdlelay is less than or equal to the assumed maximum delay, the
in the case of packet waveforms, the jammer cannot de|@@ﬂmunication will be reliable. Slmllarly, in the case of an av-
packets or insert duplicates or additional packets since tigkage-delay constraint, the coder and decoder can assume the
might impact the underlying packet communication systerfverage delay for the packets sent within a codeword is bounded
Similarly, a jammer cannot alter a fluid waveform by insertin§y some numbeb, and as long as the actual average is less than
or deleting fluid. The jammer knows that the number of packe®s equal toD, the communication should be reliable.
or amount of fluid in each codeword is approximately the same,We have just described the coding framework. An alterna-
but in most cases the jammer does not knbwr the code- tive is to view the input as a random process passing through a
words. In addition, in most cases we assume that the jamni@hming channel, and to consider the mutual information rate
knows time zero for the coder (i.e., the time when the codetween the input and output. We call this point of viewithe
transmission begins). We use randomized code capacity, whigfmation-theoretic frameworkorZ” > 0 and processe¥ and
implies that the coder and decoder have access to a sourc® ofetI7(X;Y) = £ Ir(X;Y) wherely(X;Y') is the mutual
common randomness, so that they can randomly select cotfggrmation forX andY up to timeZ’. For an input procesX’
without the jammer’s knowledge. and a jamming chann&’, we writeI (X, W) = I'7(X; Wx)
The constraints considered for jammers include a maximuihereWx is the output of jammet” whenX is the input.
delay constraint, maximum-buffer-size constraint, and averageVe consider a zero sum game between the encoder and the
delay constraint. For packet waveforms, a jammer is called@nmer, where mutual information per unit time is the objective
maximum_de|ay_constrainQMDC)jammer with de|ay param- function. We first describe the information-theoretic game for
eterD if it delays no packet byD or more time units. For fluid MDC and MBC jamming channels. We then describe the game
waveforms, a jammer is MDC with delay parameferif for for ADC jamming channels, which requires slightly different
any inputX and corresponding outpbit, 7y-(a) < T (a)+D encoder and jammer constraints for technical reasons.
for all @ > 0. For packet waveforms, maximum-buffer-con- Fix an arrival rate\ > 0. For a fixedZ > 0, inputs for MDC
strained (MBC) jammer with parameteB is a jammer that and MBC jamming channels in the information-theoretic frame-
holds no more tha packets at any time in the continuous-timé&vork are constrained to be in the cla¥s = { X: E[X(T)] =
case, or holds no more tha@hpackets from one slot to the nextAZ’} whereX (7’) is the number of packets (or quantity of fluid)
slot in the discrete time case. For fluid waveforms, an MB@ the input up to timel”. We call input processes ity rate A
jammer with parameteB cannot hold more tha® units of input processefor MDC or MBC jamming channels.
fluid at any time. For packet waveforms, given the lengtbf ForT > 0 andW, a particular class of MDC or MBC jam-
a code to be used, a jammer is calledamrage-delay-con- ming channels, let
strained (ADC) jammer with delay parametdp if whenever
X(T)>0 - i T (X
" Vo= 2, ftly T )
X(T) and

1
— D, <D Vy= inf sup Ip(X, W).
X(T) ; 7=l suwp Izl W)
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An input X* for which whereX (T') is the number of packets (or amount of fluid) in the
] — input up to time". We call inputs intr . rate A & ¢ inputs For
wl,felfw Ip (X5, W)=V D a given class of arrival processes and figed 0, we define the

_ ) ) ) _ class of ADC packet jamming channels as
is called anoptimal input on the interval0, 77 in the sense

that no matter what jamming strategy is used, at I&astunits 1 = (1)
of mutual information will get through the jammer when input Wy = { W: P m Z D; <D | =1VinputsX
X* is used and no other input can guarantee more information i=1

leakage thar¥ .. Likewise, a jamme#/* for which ) , ) ,
whereX (T) is the number of packets in the input up to tiffie

sup I (X, W*)=Vr (2) andD; is the delay added to thiéh packet by a jamméi’. The
Xedr delay constraint for ADC fluid jammers is similarly defined.

is called aroptimal jammer on the interval, 77 in the sense  FOrZ1" > 0, ¢ > 0, and a particular class of ADC jamming
that no matter what input is used, at md&t mutual informa- channelsVr, let

tion will get through the jammer, and no other jammer can guar- Vo — sy inf Tr(X, W)

antee less information leakage th&r. Assuming intelligent —Te™ XEA»I;C Wwewy LV

opponents, the encoder will use stratégy (if it exists) and the g9

jammer will use strategyV* (if it exists). Even if these strate- V.= inf sup  Tr(X, W),

gies do not exist, intelligent encoders and jammers can select : WeWr xexy. .
strategies which come arbitrarily close to satisfying (1) and (2),
respectively. For ADC jamming channelspax-min andmin-max infor-
For MDC and MBC jamming channels, we also define ~ Mation rates
= limi V7 =lim liminf V

V=lon Ve @ = g it L
and and

V = limsup Vr. (4) V = lim lim sup VT, €

T—oo =0 T .00

Slightly abusing notation, we refer 16 as themax-min infor-  are defined similarly. In generalr . > Vo andV > V for
mation rate and we refer 6 as themin-max information rate. ADC jamming channels.
We believe that the study &f andV is informative for under-  Qur goal in the information-theoretic framework is to identify
standing the capacity of jammed timing channels. In particuldr, andV for various model formulations, to understand which
for many jamming channels, we believe that limits exist in (ncoders and jamming strategies have good performance, and
and (4) and that” = V = C. We show this result for the MDC to understand relationships amolg V', andC. We find that
jamming channel for continuous-time packet waveforms, ardnstructions and bounds obtained in the information-theoretic
for degenerate cases vlhd_(e: V = C = oco. Note that in framework often allow us to say something about actual codes
generalVy >V andV > V. and jamming strategies in the coding framework. However, we
An input strategy is a sequence of inp(’»: n > 1) with  have not found a broad class of coding theorems to firmly tie
lim,, .~ T}, = oo, such thatY?» € Xy for eachn. Aninput the frameworks together.
strategy.X is max-min optimal if We comment briefly on the definitions we have given for the
. o . . o - capacityC, and the information rate€ andV. Our choices
Jim ol T, (X, w) > 113:82? ol I, (-X " W) were guided by the theory of arbitrarily varying channels (AVC),
initiated by Blackwell, Breiman, and Thomasian [8], as well as
for any other input strategyX 7»: n > 1). Similarly, ajamming by our desire to havé < V. See [12] and [23] for recent sur-
strategy is a sequence of jamming chan@ls: n > 0) with  veys of the theory of AVCs, and [34] for a study of the related
lim,,—oc T = oo such that¥ ™ € W. A jamming strategy is error exponents. Three aspects of the jammed timing channel do
calledmin-max optimal if not fit the original formulation of AVCs: i) the jammed timing
_ _ . channel has constraints, namely, an arrival rate constraint on
lim sup Ig, (X, W) <liminf sup I, (X, WT”) the coder and, in the case of average-delay constraints, a delay
"t XeA, N Xea, constraint on the jammer, ii) the jammed timing channel has

for any other jamming strategy¥’ 7»: T,, > 0).If V = V, then memory, and iii) the jammer can causally observe the particular
the common valu& or ¥ is the saddle-point information rate.iNPut waveform used. Work of Csiszar and Narayan addresses
Any pair consisting of anax-min optimal input strategy and a POINt i): the use of constraints for AVCs. The paper [13] in par-

min-max optimal jamming strategy is called a saddle point. ticular indicates_ that in defining the channel capadityit is
Next, we define the information-theoretic game for ADGNOre natural to impose constraints on each codeword and each

jamming channels. For fixe®f > 0 ande > 0, an input for an received word, rather than on averages over _codewords or over
ADC jamming channel is constrained to be in the class random codes. This suggests that our definition of channel ca-
pacityC is most appropriate. Work of Lapidoth and Telatar [24]
Xr e ={X: P(IX(T)- M| <My =1} addresses point ii): the use of certain AVCs with memory. A
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coding theorem is given for which the information rate is de-
fined in a manner similar to our definitions &f andV. Un- Ba
fortunately, there is no known extension of the AVC theory that

addresses point iii). Amount 4a 7 Inp}‘x‘:\ ................... LA
The original capacity calculations for AVC channels [8] show ~ aived g, - \

the benefit of using random codes for AVCs, which is why 9o _,"

we allow random codes. Unfortunately, due to point iii) men- Jammer output

tioned earlier, Ahlswede’s method [2] cannot be used to de- a ]

randomize the codes, so that implementation would require a
source of randomness known to the coder and decoder but not
to the jammer. Ahlswede’s method can fail even due to point i)
when the jammer is constrained if the capacity with an uncopy 4 periodic quantized dump jammer= 5.
strained jammer is zero [23, p. 2159, top part of column 2].
Blachman [7], Dobrushin [15], McEliece [25], and Hegete
al. [18] formulated a jamming game based on mutual infof0t€ger and the dump slots are taken to be siptg + 5,
mation in a different context. McEliece [25] and Hegeteal. ¢ 1 295, ... with ¢ a random variable uniformly distributed
[18] obtained coding theorems under the assumption that #fl; - ... 5. Since discrete-time packet waveforms allow only
jammer acts independently on large consecutive time interva#§i€ packet departure per slot, all packets in the jammer’s buffer
The paper [14] explores variations of this problem formulatio®t @ dump slot, including a possible packet arriving in the dump
and shows that the connection between the information gaﬁ{@t itself, are transmitted in consecutive slots starting at the
and coding theorems is somewhat tenuous and complex. ~ dump slot. _ o
However, we find that study of the information game gives e regularly spaced dump times of the periodic dump
substantial insight, if not always proving the existence of codd@Mmer map many input signals to the same output signals.

T T 1
¢ ¢+8 ¢+25 ¢+3S

for the jammed timing channel. This makes the output closer to deterministic than the input.
Equivalently, it makes it hard to recover the input from the
A. Jamming Channels output. Taking this idea one step further—quantizing in both

In this subsection, we introduce the two generic jammintgne and number of packets—Ileads to the following definition.

channels mainly used in this paper. Definition 11.2: A periodic quantized dump jammeith pa-
Two reasonable types of jamming channels are suggestedametersS and« for continuous-time fluid waveforms is one

writing mutual information rate in two different ways (for dis-that releasesa| F'(t)/«| units of fluid at a dump time, where

crete-time packet waveforms so that entropies are finite)  F(¢) is the amount of fluid in the jammer’s buffer at timend

_ _ _ _ _ the dump times are takento bg, ¢+ .5, ¢+25, ...) forsome
Ir(X, W)=Hy (X)-Hr(X|Wx)=Hr(Wx)-Hr(Wx|X) 4 ¢ (0, 5]. (See an example in Fig. 4.)

with
B. Input Processes
Hr(X)=H((X(t),0<t<T))/T In this subsection, we introduce two generic input processes

th t it f &5up to timeZ’. First. ai that perform well for certain classes of jamming channels. We
€ entropy per unittime of proceasup to imeZ'. FIrst, a jam- rﬁferto these input processes in the following sections.

mlngl cthgntnetlhca_n m?ke ttrf:%ou;?%strgaT random arr:(:hn(ia ¥wo reasonable types of input processes are suggested by
unrelated to the input so (X |Wx) is large enough tha writing mutual information rate in terms of entropy rate (for dis-

H(X|Wx) = Hr(X). Second, ajamming channel can quankate-time packet waveforms)
tize output levels and select regularly spaced times for changes

in the output levels so th&l - (Wx ) is small. We have not found
any jamming channels of the first type that perform well, and in
fact, a capacity result for the generalized billiard ball channel Eflrst an input process can be chosen to be highly random so
T'. Berger [3], as discussed in Section V, suggests thatjammitrp]%t’FT(X) is large. Second, an input process can be chosen

ch_annels of this type generally perform poorly. _However, 1AM take advantage of the jammer’s delay constraints to ensure
ming channels of the second type perform well in many cas

®fhiat the out i i j i

put is a good predictor of the jammer input so

Definition 11.1: A periodic dump jammewith period S for that H;(X|Wx) is small. For a maximum-delay constraint,

continuous-time packet waveforms is based on a collectionwé have found an input process of the second type that is a
dump timeg¢, ¢ + S, ¢ + 25, ...) chosen by the jammer in- max-min optimal input process for continuous-time packet
dependently of the input to the jammer for somes (0, S]. waveforms. There are also input processes of the first type that
The jammer releases all packets it has at each dump time.gé&form well in certain situations. The following is a class of
variation called the fill-alternating periodic dump jammer is dénput processes along the lines of the second type.
fined in Section IV.)

Ir(X, W) = Hp(X) - H(X|Wx).

Definition 11.3: A batch-with-spacingS continuous-time
We also make use of a similarly defined periodic dumpacket wavefornis a continuous-time packet waveform such
jammer for discrete-time packet waveforms, wheéfeés an that each jump time is a positive integer multiple<fThat is,
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packets are transmitted in batches (the batch sizes remain tavbereM is one of the followingCPfor continuous-time packet
specified) with batches occurring evefyseconds. waveforms,DP for discrete-time packet waveform€F for
continuous-time fluid waveforms, arRF for continuous-time,

each batch size can be any positive real numbdratsh-with- rate—co.nst.ramed ﬂ.u d Wa"efo'fm?- Similark, (A, D) is the
max-min information per unit time for waveforms of type

spacings discrete-time packet wavefoiisisimilar, but a batch — : :
can have at mosf packets, and the packets of a batch are tran]g[' Note thatl’ (A, D) is taken over all time for modelZ,

mitted in contiguous slots, instead of all at oncebach-with- Whereas’r is defined ovex0, 7].
spacings rate-constrained fluid packet waveforgsimilar,but ~ Theorem 1Il.1: Vp(), D) and V ~p(), D) satisfy the
a batch can have an amount of fluid less than or equél| emd following scaling relationship for MDC or ADC jamming
the fluid of a batch is transmitted at rate one in a time intervathannels:
Anotherln_put process ofthe second type f(_)r con_tmuous-tlme, Ver(A, D) = Moep(AD)
rate-constrained fluid waveforms and ADC jamming channels
is given in Section VI. We obtain a lower bound on capacity f§"
such a jamming channel by using the Gilbert—Varshamov bound Vep(A D) = uep(AD)
to show the existence of a deterministic code with vanishingr some function@cp(-) andw ¢ p(-).

probability of error. _ _ Proof of Theorem Il1.1: Scale time so that one unit of time
~ Toobtain an input process of the first typié £ (X) large) for  in the new time scale i/ units of time on the old time scale.
inputs to ADC jamming channels, we would like to consider §hen on the new scale, the arrival rate is one, the delay constraint

batch input for which the batch transmission times are chosgm D, and the information per unit time i’ A times its rate on
according to a Poisson process. However, such an input dg@s old scale. Thus,

not meet the input constraints for ADC channels. Instead, for a = =

fixed T > 0 we consider inputs with a fixed number of packets Ver(l, AD) = Ver(A, D)/A. .
meeting the ADC input constraints and choose the transmissi®® the first relation holds wittcp(AD) = Vep(l, AD).
times of the packets uniformly a9, 77] so the input is similar Similarly, the relationship fol -, holds for v defined
to a Poisson process. analogously. O

Definition I1.4: For a timeZ” > 0, aPoisson-like input with ~ Theorem I11.2: Ve (A, D) andV ¢ p(), D) satisfy the fol-
batch sizé: for continuous-time packet waveforms is one whickPwing scaling relationship for MDC or ADC jamming chan-
hask|\T'/k| packets in the interval0, T, with the packets nels: B
arranged into batches of size(k is an integer), and with the V() D) = €F

. . . CF( ) )
transmission times for the batches chosen independently and D
uniformly on (0, 7. and

A batch-with-spacings fluid waveformis the same, though

Vor
For a fixed timeT" > 0, a Poisson-like input with batch Ver(h D)= D
sizeS for continuous-time fluid waveforms is similar, with thefor some constantg: » andv .
modification thatS can be real-valued. FaV a positive in- Proof of Theorem I11.2: Scale time so that one unit of time
teger multiple ofk, a Bernoulli-like input with batch sizé is on the new scale i® units of time on the old scale and scale
a discrete-time packet waveform which Has\\V/k | packets the size of a unit of fluid so that one unit of fluid on the new
in NV slots such that packets are grouped into batches oftsizecale is equal ta.D units of fluid in the old scale. Then on the
with zero or one batches transmitted every super-&laigts) new scale, the arrival rate is the delay constraint i5, and the
and with the batch transmission super-slots chosen uniforniijormation per unit time isD times its rate on the old scale.
among all( A%k}q) possible schemes. Finally, for a fixed timeThus,
T > 0 such that a real-valuel evenly divides?’, a version — —
of the Bernoulli-like input with batch sizé' suitable for the Ver(, 1) =Ver(, D)D.

rate-constrained fluid model is defined similarly, where batcheg, the first relation holds witlicr = Ver(1, 1). Similarly,
of fluid are transmitted over randomly selecteglot windows. the relation for’ .- holds forv . defined analogously. I

. RELATIONSHIPS AMONG MODELS T_heorem_lll.3: V}?F()" _D) andV pr(\, D) s_atisfy_the fol-
) . ) ] ] lowing scaling relationship for MDC or ADC jamming chan-
In this section, we introduce the relationships among the vg{s|s:

ious packet and fluid models. In addition, we show tHat V' . Trr(A\)
for MDC jammers with discrete-time packet waveforms. Fi- Vrr(A, D) = D
nally, we show that” < V for each of the jamming channelgng
models. v rr(N)
Vrp(A, D) = =85
A. Scaling B for some function z»(\) andw p-(A).
We write V 5, (A, D) to represent thenin-max information Proof of Theorem I11.3: Scale time so that one unit of time

per unit timeV for a rate input process and a constrainedn the new scale i® units of time on the old time scale and
jammer with delay parameted and waveforms of typd/, scale the size of a unit of fluid so that on the new scale one unit
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of fluid is equal toD units of fluid in the old scale. Then on Trigger Packetizer |
) . X L | f

the new scale, the arrival rate dsunits of fluid per unit time,

the delay constraint i, and the information per unit time B g

‘a

times its rate on the old scale. Under the new scaling, the arrivig

rate does not exceddunit of fluid per unit time. Thus, é‘
Verr(A\, 1) =Vgr()\, D)D. 5
So the first relation holds witdgr(A\) = Vrr(A, 1). The re- g

lation forV , holds foru - defined similarly. O T
Fluid Input Waveform Packet Output Waveform
B. Relationship Between Packet and Fluid Models
. . . . . Fig. 5. Trigger packetizer.
Before introducing the relationships among the fluid models
and corresponding packet models, we prove the following useft '

.. Accumulate-and-Dump
lemma and state some definitions. T Packetizer P

Lemmalll.1l: Supposed, 4, B, B are sets angl: AxB— R

me t

and f: A x B — R are functions, and suppose for evérg A %

there corresponds € A and for everys € B there corresponds 5

b € B such thatf(e, b) > f(a, b) for all a andb. Then é
sup inf f(a, b) > sup inf f (a b) (5) §
aca bEB acA beB g S

and T 1 T T T [ I T
inf sup f (a b) > mf sup f (a b) (6) Fluid Input Process Packet Output Process
bEB 4cA leB GcA

Fig. 6. Accumulate-and-dump packetizer.

Proof of Lemma lIl.1: Choose any: € A. Then there
existsa € A such that

blél]g fla, b) > i;mlfa S (a, b)

Fluidizer

—~~
~
~

since for eaclt € B there exist$ € B such thatf(a, b) >
f( ) Equation (7) holds for alk € A, so in particular (5)
holds Similarly, choose anly € B. Then there existd € B
such that Packet Input Waveform Fluid Output Waveform

sup f(a, b) > su f(g% Z;) (8) Fig- 7. Fluidizer.

acA ac

Amount arrived up to time t

Slotter

since for eachi ¢ A there exists: € A such thatf(a, b) >
f(a, b). Equation (8) holds for alb € B, so in particular (6)
holds. O

Definition II.1: A trigger packetizers a device that converts
a fluid waveformA(t) into the continuous time packet wave-
form [A(t)]. (A trigger packetizer in isolation is not physically
realizable because it advances partial packets. See illustration
Fig. 5.)

Amount arrived up to time t

— — 1
_— . N A
Definition 111.2: An accumulate-and-dump packetizisr a _ . . ¥°§‘"m“8°f51°‘s
device that converts a fluid waveform(t) into the contin- Continuous Time Input Waveform Discrete Time Qutput Waveform
uous-time packet waveforind(¢) |. (See illustration in Fig. 6.) Fig. 8. Slotter

Definition 111.3: A fluidizer is a device which converts any
discrete-time packet waveform into a continuous —time, ratdeparts in slofz|, or the first available slot after that if previous
constrained waveform. A packet arriving at stas replaced by packets are waiting to be transmitted. The slotter is illustrated in
fluid flow with rate one on the intervdk, k& + 1), as shown in Fig. 8. (A slotter in isolation is not a physically realizable device
Fig. 7. since packets can depart before they arrive).

Definition Ill.4: A slotteris a device which converts a con- We use these definitions and Lemma lll.1 to show relation-
tinuous-time packet waveform having no arrivalginl) intoa ships among the various channel models. First we describe the
discrete-time packet waveform. An arrival at the device at timeelationships between the continuous-time packet models and
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WC ¥al WC P

Xor | Accumulate- Xcp Xer Xcr W, Trigger ;
: : CF —— . .

- and-Dump Wep I : Packetizer :

Packetizer : :

..........................................................................

Fig. 10. Relationships of transformatiodsf” > CP.
Fig. 9. Relationships of transformatiosP? > C'F' with extra delay.

of length?” > 0, let X-p be the set of all raté. input pro-
the continuous-time fluid models. Next, we describe the relgesses for continuous-time packet waveformsMet be the
tionships between the discrete-time packet models and the cget of all rate\ input processes for continuous-time fluid wave-
tinuous-time, rate-constrained fluid models. forms, letWcp(D) be the set of all MDC jamming channels
with delay parameteb for continuous-time packet waveforms,

Theorem Il1.4: For ADC jamming channels X ‘ X
and letWer(D) be the set of all MDC jamming channels with

Ver(A, D) >Vep <)\7 D <1 + L)) delay parameteb for continuous-time fluid waveforms.
AD Given a fluid jamming channéVr € Wer(D), there ex-
and ists a packet jamming channélcp € W p(D), obtained by
1 concatenating the fluid jamming channiél-» with a trigger
VerAD)2Vep A D1+ ). . g the jan 9 F ' a trgg
AD packetizer as in Fig. 10. Sinc¥-p C X p, the fluid jammer

Proof of Theorem Ill.4:For an interval of lengtll” > 0 will meet its delay constraints for any packet input process.
ande such thatd < e < X, let Xzp (short forXr . for con- In addition, the trigger packetizer advances partial packets and
tinuous-time packet waveforms) be the set of all rate- ¢ does not add any delay. While trigger packetizers in general are
input processes for ADC jamming channels for continuous-tin®t physically realizable, the resulting concatenatioéf »
packet waveforms, let-» be the set of all rate\ &+ ¢ input  with atrigger packetizer is realizable for continuous-time packet
processes for ADC jamming channels for continuous-time fluidputs. Thus, the concatenation of a fluid jammer with delay pa-
waveforms, leWcp (D) be the set of all ADC jamming chan-rameterD and a trigger packetizer results in a packet jammer
nels with delay parametdd for continuous-time packet wave-with delay parameter no larger thdh Also, for every rate\
forms, and leW¢ (D) be the set of all ADC jamming channelspacket input proces¥cp € Xcp, there is a raté fluid input
with delay parameteb for continuous-time fluid waveforms. processXcr € Acr, namely Xcr = Xcp.

For every packet jamming chanrniélcp € Wep(D), there Applying the data processing inequality (cf. [10, p. 32]) itis
exists a fluid jamming chann&cr € Wer(D(1+ —5p))  €asy to see that for any fixed tin#e > 0, Ir(Xcr, Wer) 2
obtained by concatenating an accumulate-and-dump packetizetXcr, Wep). Then applying Lemma 1.1 withd repre-
with the packet jamming channé&Vep as shown in Fig. 9. sentingXcr, A representing¥cp, B representingVer (D),

The resulting fluid jammer is ADC with delay parameter aB representingVcp(D), and f and f representing/ 7, and
mostD(1+ ﬁ) since the accumulate-and-dump packetizéaking appropriate limits, the result is shown. O
holds at most one unit of fluid at a time and hence, by Little’s

Corollary Ill.1: For ADC jamming channels asD —
law, introduces a mean delay of at mbgt A — €). Similarly, for y : g o

every rate\ fluid input process{ ¢y € Xcr, there exists a rate Vep/Ver —1 and Vip/Vep — 1
A packet input proces& ¢ p € X p obtained by passing ¢ r Proof of Corollary 111.1: By the scaling results of The-
through an accumulate-and-dump packetizer. orem 111.2 we have that for alh and D, Vp(A, D) = VCTF
Using the data processing inequality of information theoffpr some constarttcr andV .. (A, D) = =4= for some con-
(cf. [10, p. 32)), it is easy to see that for any fixét> 0 stantv . Applying the results of Theorems 111.4 and 111.5 for
Ir(Xep, Wep) > In(Xer, Wer). ADC jamming channels, we have that B
UCF _ Ver

Then applying Lemma Ill.1 withA representingtcp, A Ver _vcr >Vep(\, D) > — = -
representing¥cr, B representingVep(D), B representing D D(1+55) (1+55)
Wer(D(1 + 5255)), and f and f representingly, and and

taking appropriate limits, the result is shown. O Vep= Yer o Vep(\ D) > ver  _ Yer
T D ~—— T D+ (1+5%)
Theorem |IIl.5: For MDC, MBC, and ADC jamming - ,

channels for all xandD. Thus,Vep/Ver andV . p/V ~fp arein the
_ _ interval[(1++%5)~*, 1] for all A and D, and the result follows.
Ver(A, D) >Vep(A, D) O
Vop(A\D) 2V op(\ D). Theorem 111.6: For ADC jamming channels we have

Proof of Theorem 1I1.5: To be specific, we show the re- Ton(\ D) >T <)\ D <1 1 i))
sult for MDC jamming channels, but essentially the same proof pr(A D) 2 Ver { A, + AD + 2D

works for MBC and ADC jamming channels. For an intervahand
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WRF‘ WD P
! | Accumulate- : :
XrF X : Xppi XRF ; :
i}. and-Dump or Wpp Fluidizer [ . ———&= Fluidizer Warr = ’Ihggfar =1 Slotter [——==
: Packetizer : Packetizer :

Fig. 11. Relationships of transformatiod3P > RF with extra delay. Fig. 12.  Relationships of transformatiori#f” > DP.

1 1 MBC and ADC jamming channels. For an interval of length
Vpph D) 2V e <)" D <1 o ﬁ)) : T > 0, let Xpp be the set of all rate- input processes for
discrete-time packet waveforms, I&fzr be the set of all
Proof of Theorem I11.6: For an interval of length” > 0  rate-\ input processes for continuous-time, rate-constrained
ande such thad < ¢ < A, letXpp be the set of all raté input  fluid waveforms, ledVp p(D) be the set of all MDC jamming
processes for discrete-time packet waveformsalgt be the channels with delay parametdd for discrete-time packet
set of all rate\ input processes for continuous-time, rate-cowaveforms, and letVry(D) be the set of all MDC jam-
strained fluid waveforms, |&tVp (D) be the set of all ADC ming channels with delay parametér for continuous-time,
jamming channels with delay parameter for discrete-time rate-constrained fluid waveforms.
packet waveforms, and I#Vz (D) be the set of all ADC jam-  For every rate\ packet input proces& p» € Xpp, there is
ming channels with delay parametér for continuous-time, a rate) fluid input processX zr € Xz Obtained by passing
rate-constrained fluid waveforms. Xpp through a fluidizer. For every fluid jamming channel
For every rateA continuous-time, rate-constrained fluidivy,, ¢ Wgp(D), there exists a packet jamming channel
input processX g € Xrr, there exists a raté-discrete packet W, € Wpp(D), obtained by concatenating a fluidizer, the
input processXpp € Xpp obtained by passing g x through  fluid jamming channelVz, a trigger packetizer, and a slotter
an accumulate-and-dump packetizer. For every packet jammigg shown in Fig. 12. The fluidizer adds exactly2 unit of
channelWpp € Wpp(D), there exists a fluid jamming delay to each packet, while the trigger packetizer subtracts at

channel least1/2 unit of delay from each packet-sized unit of fluid.
Taken together, these devices add no additional delay to a
War € Wrp <D <1 + _ + L)) discrete-time packet waveform. For a discrete-time packet
(A—e)D 2D input, the output of the trigger packetizer will have at most one

btained b tenai lat d-d ket acket per slot since the jammBrzr enforces at most one
obtained by concatenating an accumuiate-anc-aump packelizgei s g per unit time and the input to the slotter will have
with the packet jamming chann&’~p and a fluidizer as in

. . L . ; . no packets if0, 1) since X Xpp. Thus, the slotter onl
Fig. 11. The resulting fluid jammer is a continuous-time, rat b 0, 1) pr € 4pr y

1 Sdvances packets to the nearest slot time, so it does not add

constrained ADC jammer with delay paramefl + =D an delay. The only delay in the resulting discrete-time packet

L : . ) .
555)- To see this note that any continuous-time, rate-constraingthmer is that introduced by fluid jammer and the resulting

fluid waveform is converted to a discrete-time packet wav@g|ay parameter will be no larger in the discrete-time packet

form by the accumulate-and-dump packetizer and the acCUMMimer than in the continuous-time, rate-constrained fluid

late-and-dump packetizer holds at most one unit of fluid atjémmer.

time and hence introduces a mean delay of at mp&t — ¢). As before, for any fixed” > 0

The fluidizer introduces a mean delay of at mb&2 slot times

since the packet is released at raturing one slot time.
Applying the data processing inequality [10, p. 32], it is easy

to see that for any fixed tim@ > 0, I7(Xpp, Wpp) > -

Ir(Xgp, Wgr). Then applying Lemma I1I.1 withd repre- Then applying Lemma Ill.1 withA representingXrr, A

sentingXpp, A representing¥zr, B representingVpp(D), 'epresentingtpp, B representingVrp(D), B representing

B representingVrr(D(1 + x=5 + 355)), andf and f rep- Wpp(D), andf andf representingr, and taking appropriate

resenting/ -, and taking appropriate limits, the result is showA!m'ts’ the resultis shown. =

U Corollary 111.2:  For ADC jamming channels &8 — ~c and

Theorem 111.7: For MDC, MBC, and ADC jamming chan- \D — o (for example, with\ fixed)

nels we have

Ir(Xgr, Wrr) > I7(Xpp, Wpp).

VRF()\7 D) ZVDP()\7 D) VDP/VRF — 1 and KDP/KRF — 1.
and Proof of Corollary 111.2: The proof is similar to
Ver(\, D) >V 5p(A, D). that of Corollary Ill.1. Theorems 1.3, IlIl.6, and 1.7
imply that Vpp/Ver andV ,5/V g are in the interval
Proof of Theorem 111.7: To be specific, we show the result[(1 + 5 + 55) !, 1] for all A and D, which concludes the

for MDC jamming channels, but the proof holds equally foproof. O
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C. Saddle-Point Existence for MDC Jammer for Discrete-Timgherefore, lim; _, ., ﬁ exists, which in turn implies that

Packet Waveforms lim; oo @ exists. g

In this subsection, we show th&t = V for MDC jam-  Thgorem I11.8: For MDC jamming channels with delay pa-
ming channels for discrete-time packetwaveforms (X&r = rameterD and discrete-time packet waveforms,= V and a
V pp). Firstwe prove two useful lemmas. mutual information rate saddle point exists.

Lemma 111.2: For MDC jamming channels with delay pa- Proof of Theorem I11.8: ForT" > 0, let X be the setof rate
rameterD and discrete-time packet waveformé; = V . for A input processes for discrete-time packet waveforms andlet
all positive integerd’. be the set of MDC jammers for discrete-time packet waveforms.

Proof of Lemma I11.2: Fix 7' a positive integer. A dis- By Lemma lll.2, we have that'; = V ;. for all 7.
crete-time packet waveform on the interf@l 7] can be repre- ~ Take
sented by a vector if0, 1}7, such that théth coordinate is one
if a packet arrives in slat Thus,Xr can be viewed as the set of Jo)=tv, = ez V%ntmw 1(X5 W)
probability distributions or{O 1}* such that the mean number
of arrivals satisfies[z; + - - - + z7] = AT. A probability dis- Thenf is clearly nondecreasing. Fix integetst > 0. Let
tribution on{0, 1} can be expressed &s(x): v € {0, 1}1),
which is an element oR{%1}" | the space of all vectors with X' =arg prea [nin (X5 W)
index set{0, 1}T Moreover, X7 is a closed, bounded, convex
subset ofR(% 13" Similarly, letW represent the set of condi-P€ & maximizing input foff () and, similarly, letX* be a max-
tional probability density functiongg(y|z): z, y € {0, 1}¥}  imizing input for f(s).

satisfying the causality constraints Construct a new inpuk™ which consists ofX* for the first
s time units, a transition for the next = [£] time units
alyr, - wlm) = qlur, - Rl ®) (described next), and a translation’f for the last time units.
Each of the first| Ab| slots of the transition interval have an
if 21 = @1, ..., Tx = @1, and satisfying arriving packet, the next slot has a packet with probability-
| Ab|, and all of the remaining slots of the transition interval have
ayr, o Unlz, o 2n) =0 no packets. The mean arrival rate during the transition interval,

and hence for the whole input, }s Since

if  andy violate the maximum delay less thdn cor;straint. b WD) S (115D — 1
ThenW is a closed, bounded, convex subseﬁé? 1y —(Ref+ Dz A -Mp-12D-

Since mutual information/ (X;Y) is a concave function

; ; there are no packets input for at led3t— 1 slots at the end
of p(x) for fixed p(y|z) and a convex function ab(y|x) for  o¢ the transition interval. Thus, there are no packets left in the

(X, Y) distributed according t(z, y) = p(z)p(ylz), the jammer justafter the first+-b slots. Using the notatia;, ,, =
classicalmin-max theorem (e.g., [22]) implies that (X*(t): a+1 < t < b), and lettingg = s+ b andr = s+b+t

1111/%;11 max Ir(X, W)= max 1%11 Ir(X, W) f(r) = v%nemw I(X*Wx.) 9)
and the result follows. O _ I (Xiko e WX*)
Lemma 111.3: Given a nondecreasing functighon R or = V%Iltl%}v +I( W ‘X ) (10)
Z, and somé > 0 such thatf(s + ¢t +b) > f(s) + f(¢t) for (a,r1s WX | X0, q)
all s, ¢ > 0, the limitlim, ... f(t)/t exists. T(X*;Wy-)
Proof of Lemma Ill.3: Let F(t) = f(¢t — b) and lets =
s+ bandt = ¢+ b. Then > min ( (q 7] (0 q] ) (12)
WCWw
F(3+1) > FG3)+F(), fors i>b ( (2,71 X (0, g Wx*)
= = I XS; WXS
which in turn implies that% > @ for all » and for all ( )
P> > min | TH (Xikw]) (12)
Let L = limsup, .., F(¢)/t and letl’ < L. SelectB > b wew B
such that#'(B)/B > L'. Then —H (‘X(q 7] WX*)
F(nB) > ) > V%neln I(X°,Wxa)+ mln I(X"Wxe) (13)
nbo— B > f(s)+ 1 (®) (14)

for all n. Sincel" is nondecreasing, this implies that . .
where (12) follows since conditioning only decreases entropy

leint F(t) o and sinceX(, , ., is independent o, _,,;; and (13)
it ==& follows since the transition interval empties the jammer’s

— 00
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buffer. Thus, by Lemma lll.3jm;_..., f(¢)/t exists and hence : ' ' ' ' ' ' ' '
limy_., V, exists. Thereforel pp = V p. O

| [— Geo. batches every D, Random ruler with spacing D]

@

-
N
T

A

D. Relationship Between Capacity abd
In this subsection, we show that in genefak V.

-
kN
T

'

-
(S
T

I

Theorem 111.9: The capacityC for a class of MDC, MBC,
or ADC jammers satisfie§’ < V, where codewords are taken
to be rateA codewords, and input processes are rat@put
processes.

Proof of Theorem 111.9: The proof is similar to the stan-
dard converse coding theorem for channel capacityZLgt 0
ande > 0. LetW be the class of MDC, MBC, or ADC jamming [ ]
channels. For everft < C ande > 0, there exists a sequence
of random(M, T') codes witht log M > R — ¢, with

o

and with maximum probability of error over all messageand ) , . .
over all jammers M}’ converging to zero & — . the capacity of an MDC jammer for continuous-time packet

Since the maximal probability of error converges to zero, tHiAveforms is equal to the saddle-point information rate and
average probability of erroPe(,T) averaged over all messagest,hat codes exist to ach_le\_/e th_e rate even when the decoder does
for any W € W also converges to zero & — oc. For a not have access to t|_m|ng information. _The _four V\_/aveform_
givenT, let m be a message index uniformly distributed oveyPes are considered in t.he same order in this section and in
{1, ..., M}, and letd be a random variable, independent.of each of the next two sections.
representing the choice of codebook. Consider the input coq- MDC, Continuous-Time Fluid Model
sisting of a codeword depending on the random variablesd ] ] ] )

6, Xm.o. Fix W € W and letY represent the corresponding FOr continuous-time fluid waveforms, the capacity of an
output waveform for jammel up to time7". Using the inde- MDC jammer with delay parametdp is infinite. This result

Information rate (bits/unit_delay)
o
> -
T
)

I3
o
T

L

0.2 b

0 ! s s ) ' ' ' ' )
[ 0.1 02 03 0.4 0.5 06 0.7 08 09 1
AD

X (T)
T

—A‘Sc)zl, fori<m<M
Fig. 13. Value of MDC game for continuous-time packet waveforms.

pendence ofr and® can be seen by considering a rateode with batches every
D time units where the batch size is a positive, real-valued
log M = H(m|0) = H(m|Y, 6) + I(m;Y|6) (15) random variable with meaiD. Since MDC jammers cannot

delay fluid by D or more time units, the batch size can be
communicated error-free through any MDC jammer. Since a
positive real-valued random variable can convey an infinite
(16)  number of bitsC' = Vep = V op = .

<log2+ PF(T) log M + max (X6, Y0 = 6)
o€
(7)

<H(mlY, 8) + Z (X, 6,5 Y0 = 60)p(6 = o)
6o CO

B. MDC, Continuous-Time Packet Model
Givenyp > 0, let Geog(ys) represent the probability distribu-

L . jon on the nonnegative integers giveny= n(1—n,)*, where
where (16) follows from the data processing inequality and (195)_ L LY .
follows from Fano’s inequality. Since (17) holds for edéhe = T+ This distribution has maximum entropy among all

distributions on the nonnegative integers with mgahet X*
W, we have that be a batch-with-spacing* input process such that each batch
R<e+ 1 log M size is chosen independently with distributiGog(AD). We
= T call X* a Geog(AD)-batch-with-spacing? input process. Let
log 2 ¢ e (X 6, Y160 = 6g) W* denote a periodic dump jammer with periéd

= (1) + wi’relwe €0 (1) . . .
(1-r T 0 (1-r )T Theorem IV.1: For MDC jamming channels with delay pa-
Note thatX,, » € Ay . for the ADC model. For the MDC rameterD and continuous-time packet waveformd&’*, W*)
or MBC morcrjlél choosyeg a slightly larger time interd&l> T is(a sr(;ldd)l)e point, and the saddle-point information rate is
' H(Geog(AD . - - .

and add to each codeword an appropriate number of packets {or b (seeFig. 13). Henc&™ is max-min optimal and
fluid) in the interval(7’, 7] to obtain codewordst,, ¢ so the '€ periodic dump jammer isin-max optimal.
random input satisfie€[X,,,(T)] = AT". Taking limits we get Proof of Theorem IV.1:It suffices to show that itV is the
thatR < V for eachR < C so that the result follows. 0 S€t of MDC jammers with delay paramet®rand X7, 7' > 0

- denotes the rat& input processes fdo, 7], then

IV. MDC JAMMERS 1

_ limsup sup Ir(X, Wi) < = H(Geog(A\D 18
In this section, we present bounds fgrand V' with rate T—>oop XEET ( W< D (Geoo(AD)) - (18)

A input processes and MDC jammers. We also show thand
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. ) - 1 3 Codeword: 1,2,3,1,0,2,0
L f f I (X", Wx) > =H(G AD)). (19 S
111}1’10% V‘Helw T( PR ) - D ( eOO( )) ( ) Transmitted 2 2

I 1

First we show (18). For any’ > 0 which is an integer mul- i
tiple of D, and a fixedX € A'r

1
|

1?§2D 3D 4D 5D 6D 7D
Ir (X;W3) <Ir (X;Wx, ¢) = Ir (X;Wx|¢) (20) i :

Received | N
—5>I T é

=H((Wx(t), 0<t<T)|¢) (21) > 2 | \J L
e~ A AN A
Estimate: 1 b 0 5 0 1 2 0

IA

T

D
Y HY) (22)
i=1 Fig. 14. Coding and decoding: decoder does not know time that coder begins
. L . . transmitting.
whereg is the initial dump time and; is the number of packets
that depart at théth dump time. Equation (21) follows because

under jammeiV*, the output is completely determined by wheres is a fixed constant specified below. The s@j\:l VET)

and¢, and (22) follows since conditioning onlyreducesentropiﬁ. 33”?.‘1 tPa:]eIaytﬁumorthe ﬁequdenc(awé, T xl\f) decisi
Let n; = E[Y;] for eachi. Then with no other constraints < rst show mat for such codewords, error-iree decisions

we have that (Y;) < H(Geoo(1;)) by the maximum entropy '(ilan tbe made _at :rr:eddelcoder, evgnr\IN|thtc:1utttt|rr1n|ng |nformat|cr)1n.
property of theGeog (1) distribution. Letn = %. The average ext, we specify the delay susand show that there are enoug

number of packets that arrive at the jammer up to tifes codewords in this code to achieve the saddle-point information
te.
AT, soS " i, the mean number of packets that depart tH& .
2= M P P The decoder works as follows. Let tinie for the coder be

jammer up to timel’, is at most\7". Thus,% S < AD. : : . . .
can asiy e seen 1l (1) s oy and monoone 12 00 DS bR et o e o e
increasing inz, so by Jensen’s inequality P '

transmitted batch size%;, ..., Xy, the decoder would like to
. n know 7, the delay of the first packet received, as in Fig. 14. By
Ip(X;W3) < Y H(Geoo(p:)) < nH(Geop(AD)). guessing a delay, the decoder can get for eagtan estimate
=1

of X;, denotedX’j, by counting packets in the intervglD —
Thus,I+(X, W%) < H(Geop(\D))/D for all X € Xy and 7, (j+1)D —7), as shown in Fig. 14. The codeword in Fig. 14

(18) holds. with N = 7 satisfiesy\ | iX; = s = 30. Note that if7 =
On the other hand, note that for afy € W andT > D T, the estimate of the codeword equals the codeword, and, of
course, the estimate of the codeword has the same delayasim
Ip (X*;Wx+) 2 H(X*(#),0<t<T - D)) the codeword. As a function &f the delay sum of the estimated
. codeword is nondecreasing and its jumps mark changes in the
_H <(X (), 0t<T- D)|> estimated codeword. Thus, the decoder can correctly find the
(Wx«(t),0<t<T) codeword by adjusting until Ef;l jX; = s. Forexample, for
=H((X*(t),0<t< T — D)) (23) the7 shown in Fig. 14, the delay sum of the codeword estimate
is 33, indicating that" is too large. Therefore, a codeword can
— {T — DJ H(Geoo(AD)) (24) be transmitted without error evefy V time units.
D Next we specify the delay sum and show that there are

nough codewords to achieve the saddle-point information rate.

et U be the collection of sequences of nonnegative integers
N

where (23) follows from the fact that for any jammer delayin
packets by strictly less thaP time slots, the inpufX™* up to

time T — D is completely determined by the output up to tim%\lD']'\}’ fo\h) such thatr; > 1,2y = 0, and};,_, «; =

T. Equation (24) follows becausg* hasL%J independent ]. Then

batches of arrivals by tim& — D. Therefore, (19) is true, and [ADN]+ N —3

Theorem IV.1 has been shown. O Ul = < N_o ) (25)
Next, we show that the capacity of an MDC jammer for con- DTN 3 Nz o

tinuous-time packet waveforms is equal to the saddle-point in- o PPNIHN -3 (=) [ 1os (26)

formation rate. Moreover, we show the existence of codes that = [ADN]+ N -2

achieve the saddle-point information rate, even when the de- ] )

coder does not have access to timing information. whereh(p) = —plogp—(1—p)log(1—p)and (26)is obtained
Consider a block timing code with codewords of duratioffom the inequality

DN time units. Each codeword is such that packets are trans-

mitted only at times which are a positive integer multiplehf <

so that a codeword can be identified with the vector of batch

sizes(a:l, . .QZN). The code will be taken to be the set of alt]_O’ p. 151] For each possib]e de|a_y sum

(z1, ..., xxy) with nonnegative integer coordinates such that

g1 2 1 ay = 0,50, o; = [\DN], andY 0, jz; = s, ke{0,1,..., NITADNT}

n > 1 2n,h(k/n)/ log 2
k) " n+1
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let X1

N
Sy = (xl,...,xN)EU:ijj:k

=1

We chooses = argmaxy, |Sk|, SO thats is the most common
delay sum. Given any > 0, for NV large enough, the number of
codewords having delay su#ris lower-bounded by

Information rate (bits/slot)

& > 21&22 ((AD+DR(5557) =)
N[ADN] —

One such codeword can be transmitted without error elzg¥y
time units, so the rate of the code is at least

~—— UB: Periodic dump jammer with period D \-...‘
()\D + 1 ) h( ﬁ ) — € H(Geoo()\D)) — € —+— UB: Periodic-fill-alternating dump jammer with period D S
— . -+ LB: Geo(0-L)-batch-with—spacing-D input '\+"_
D D *
. )

Sincee is arbitrary, for the MDC jamming channel with delay S o1 o0z o3 e os 06 07 08 08
parameterD and continuous time packet waveforms, we have

that Fig. 15. Information rate for MDC jammer witR = 2000, for discrete-time
packet waveforms and continuous-time, rate-constrained fluid waveforms.

— H(Geog(A\D
C=V= Z = % Dump Dump Dump
slot slot slot
Voo v v

C. MDC, Continuous-Time, Rate-Constrained Fluid Model mewt [[1i0 AMIOONOM 00000

ik

The MDC jamming channel for continuous-time, rate-con- : ; ; g
strained fluid waveforms has infinite capacity for the same ‘ ; ) ] X )
reason that the MDC jamming channel for continuous-time fluidjammer | ; : ? :

waveforms has infinite capacity. That§,=V =V = . output | T M AL
| 'Fill |Dump! Fill |Dumpl Fill |Dump! Fill |
D. MDC, Discrete-Time Packet Model ¢ 5+ D®T 2Py 3p? TP, L sp? T 6Dy L 1p

An information rate saddle point has not been found for gn . . . .
. . . ig. 16. Fill-alternating periodic dump jammer.
MDC jammer for discrete-time packet waveforms, but have

shown the existence of a saddle point in Section Ill. We present, tighter bound is provided by considering the following

upper and lower bounds on the saddle-point information rajgy, \er afill-alternating periodic dump jammaesith period D
V.D’.’ =V . The best of these upper and lower bounds 6r discrete-time packet waveforms is the following variation of
within a factor of3 for A < 0.7 and the bounds are reasonablyé periodic dump jammer for discrete-time packets JFarl, the
close for0.7 < A < 1 as shown fol) = 2000 slots in Fig. 15. output window is the interval @b slots[¢p-H k—1)D, ¢+kD)
First we descnbg the jamming strategies that give Uppgr, slots¢-+(k—1)D throughe-+kD— 1) where the phasé
bounds on the maximum saddle-point information rate. Th uniformly distributed or{0, D]. In an odd-numbered output
we describe the input process that gives a lower bound on fhdow, the jammer transmits a packet in the first slot of the

saddle-point information rate. L . window (if it has one to transmit) and it keeps transmitting
An easy upper bound on the saddle-point information r?ﬁg

by USi iodic d . Usi iodic d fackets in each successive slot until either it has no packet to
COMES by USIng a periodic aump jammer. Using a periodic AUl nsmit or until the end of the window is reached. Packets ar-
jammer, the output logically takes a valueQin. .., D at each

d . d h ket is delaved by less atots. Th riving after the first slot may still be transmitted, although if the
ump time, and each packetis de ayed Dy 1ess Inai ts._ € jammer is idle in a slot of the window due to a lack of packets,
mean number of packets per dump time\i8, and the distri-

bufi D with \D having th then it remains idle for the rest of the window. The odd-num-
. ution ono, - V.V't mean awr;)gt e greatest_entropybered windows are callddll windows since the jammer is trying
is a geometric distribution, denoté€tko, (AD), where if Z is

distributed di Geol(\D q able. th harder to fill those windows with packets. In an even num-
istributed according to @eo (AD) random variable, then bered window the jammer acts the same way as a periodic dump

b jammer: during the window it transmits only packets that arrive
P(Z=z)=n"/Y u, forze{o,...,D} by the first slot of the window. The even-numbered windows are

i=0 calleddumpwindows. An example of a fill-alternating periodic
andn is chosen so that[Z] = AD. Therefore, an upper bounddump jammer is shown in Fig. 16. In effect, a fill window can
on the entropy rate of the output of an MDC periodic dumfsteal” some packets from the subsequent dump window.
jammer and hence an upper bound on the saddle-point informaThe maximum entropy rate for the output of a fill-alternating
tion rate isH (Geo}’ (AD))/D. The bound is plotted in Fig. 15 periodic dump jammer is an upper bound on the maximum in-
for D = 2000 and labeledPeriodic dump jammer with period formation rate for the jammer and a ratd@nput process. Let
D. Y. be the number of packets transmitted by the jammer during
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2 D +1 packets arrive chosen to maximize the bound for eaktand the bound is la-
| beledGeo(0 — L)-batch-with-spacingD input
It should be noted that the lower bound on the saddle-pointin-
|<—>1<—> formation rate obtained from th@eo{ (\(L + D))-batch-with-

j 1D+1-j spacingtL + D) and the upper bound on the saddle-point in-
formation rate obtained from the fill-alternating periodic dump
jammer have roughly the same general shape and that they differ

IIIIIIIIIIIIIIIIIIIII‘

Dum 1\ Fill D by a factor of3 for A < 0.7. Note that the lower bound for
p 1 ump R . .
A = 0.1 is greater than the upper bound for= 0.9, implying
é +2kD that the saddle-point information rate is not symmetric around

Fig. 17. Fill-alternating periodic dump jammer. A= 1/2'

V. MBC JAMMERS
the kth window, [¢ + (k — 1)D, ¢ + kD), for all & > 1.

Thus,Yax41 is the number of packets transmitted by the jammer In this section, we consider an MBC jammer with parameter
during the fill window[¢ + 2kD, ¢ + (2k + 1)D — 1), and B that can carry over at most units of traffic in its buffer, with
Yai42 is the number of packets transmitted during the subs&e unit of traffic being a packet for the packet models.

guent dump window. We now prove that with probability one

(Yary1, Yory2) € S, where

2 The capacity for MBC jammers for continuous-time fluid
S={v2) €{0, 1., D}y +yp S DOty =D} etorms is infinite. The coder transmit# + 1 units of fluid
Suppose thalsz; 1 + Yaxi2 > D + 1. It must be shown that at some timé’ chosen or(0, 1]. Since an MBC jammer can
Yar41 = D. AtleastD + 1 packets arrive during the interval ofhold no more tha3 units of fluid, the jammer must immedi-
2D slots[p + (2k — 1)D + 1, ..., (2k + 1)D]. Even if these ately release at leagt 4 1 units of fluid at timel/. Thus, the
packets arrive as late as possible,foxK j < D at leastj of decoder learns the real-valu&dso an infinite amount of infor-
these packets arrive by théh slot of the2k + 1th window, as mation can be conveyed. Therefo@,= Ver = Vop = 0
shown in Fig. 17, so thatz;1; = D, as was to be proved. for the MBC jamming channel for continuous-time fluid wave-

The maximum entropy distribution on the s&tf possible forms.

values fOf(Y2k+1, Y§k+2) such thatE[ng+1 + Yik+2] =2DA

MBC, Continuous-Time Fluid Model

is a geometric distribution truncated $osuch that B. MBC, Continuous-Time Packet Model
P(Vorrs —i. V- — ) — it k1 Using identical arguments to those in the preceding subsec-
(Vorwr =14, Yorro = J) =™/ Z T tion,C = Vep =V p = oo for the MBC jamming channel

(k,DeS . .
for (i, j) € S for continuous-time packet waveforms.
wherer) is chosen so thak[Ya,,1 + Yari2] = 2DA. The re- C. MBC, Continuous-Time, Rate-Constrained Fluid Model

sulting bound on the saddle-point information rate for an MDC An upper bound off’ g5 for an MBC jammer is obtained with
jammer withD = 2000 slots is shown in Fig. 15 and is labeledhe periodic quantized dump jammer with period and quanta
fill-alternating periodic dump jammeSince the fill-alternating size both equaBB/2. If the amount of fluid in the buffer at a
periodic dump jammer scheme only deviates from the periodigmp time is less tha® /2, then the jammer holds the fluid
dump jammer scheme whéfi,.11 + Yai2 IS relatively large, until the next dump time, and at moBy/2 additional units of
the performance of the fill-alternating periodic dump jammer uid can arrive by the next dump time since the input is limited
noticeably better for arrival rates of abdut2 and larger. to ratel. If instead the amount of fluid in the buffer is greater
A lower bound on the saddle-point information rate is givethan or equal td3/2 at a given dump time, then the jammer will
by aGeof (ML + D))-batch-with-spacindZ + D) input. The  release fluid at rate until the next dump time. Since the input
batch sizes for this input range frdinto L and are chosen inde-js limited to ratel during this interval, the fluid level cannot
pendently according tGeog (A(L+ D)) random variables such increase. Since the buffer is initially empty, the fluid level in
that forA < 1, L is an integer satisfyind: > 25 (if A = 1,  the jammer’s buffer will never excedd units and the jamming
no information can be conveyed through tlmlng) Batches ag@rategy is MBC for continuous-time, rate-constrained inputs.
transmitted one packet per slot in consecutive slots starting afrhe jammer’s output is logically one of two symbols every
the beginning of th¢ L + D) interval so that there are at leastB /2 time units, regardless of the input process. The information
D idle slots between batches. Since the jammer cannot defaye for any rate\ input process and this MBC jamming strategy
packets byD or more time units, the batch sizes can be reprgs upper-bounded by the maximum entropy rate of the jammer’s
duced exactly at the output, and there is one batchiperD  output,2k()\)/B. Hence, an upper bound @Az is given by
time units so that the information ratLe for this input process amt()\)/B_
any MDC jammeV is at Ieastlw. Since thisis  We show in the following subsection that capacity for the
the information rate for a particular input & and any MDC MBC jamming channel for discrete-time packet waveforms is
jammer, itis a lower bound on the saddle-point |nformat|on ratewer-bounded b)}b(—A We can achieve the same rate for con-
Fig. 15 illustrates this bound fab = 2000 whenl > = is tinuous-time, rate- constralned fluid waveforms by treating the
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A simple lower bound ol j, » is obtained with the following
batch-with-spacing8 + 1) process. Time is divided into super-
slots consisting of B + 1) consecutive slots. In each super-
slot, the encoder with probability — A transmits a binary)
by not sending any packets, and otherwise it transmits a binary
1 by filling the super-slot withB + 1 packet transmissions. We
will show that the input is determined by the jammer output.
The decoder makes hard decisions at the end of each super-
slot. We define outstanding packets as any packets sent by the
encoder, but not yet received by the decoder. We claim that at
each decision time, the decoder has sufficient information to
make the correct hard decision and to determine the number
of outstanding packets. The proof is by induction. If the first
transmitted bit is a zero, then zero packets are output in the first
super-slot. If the first transmitted bit is a one, then at least one
packet is transmitted in the first super-slot. Thus, the claim is

* true for the first decision timé + 1. Suppose the claim is true

for the £th decision time. In particular, the decoder knows the
number; of outstanding packets at ttk¢h decision time. If the
fluid as packets and placing a trigger packetizer and slotterestcoder sends a binafyin the & + 1th super-slot, then the
the jammer output (start the rate-constrained waveform at tig&gnmer must output or fewer packets in the+ 1th super-slot.
1). Thus,Qth)‘) >0 > % for the MBC jamming channel for If the encoder sends a binatyin the k + 1th super-slot, then
continuous time, rate-constrained fluid waveforms. the jammer must output at least- 1 packets in the: + 1th
super-slot. Thus, at the end of the-1th super-slot, the decoder
D. MBC, Discrete-Time Packet Model will know the information bit sent during thie+ 1th super-slot.

Upper bounds o ;,» and lower bounds ok ;, » for MBC Using that I_<nowledg_e, together with knowipignd the number
jamming channels are presented in this subsection and aréfipackets input during the + 1th super-slot, the decoder can
lustrated in Fig. 18. The upper and lower bounds that we hatalculate the number of outstanding packets. Thus, the proof of
found are within a factor ot of each other for all values of.  the claim by induction is concluded. Since the decoder receives

Let W denote the set of MBC jammers for discrete-tim&ne grror—free binary symbol evefy + 1 slots and the arrival
packet waveforms and assume that the jammer buffer is alw4g4 ISA, we have that bot’ ,,» and C are lower bounded
initially empty. LetX; be the set of rata discrete-time packet bY 7o This lower bound differs from the upper bound by a
waveforms. factor of2 and is illustrated in Fig. 18 with the lablehtch-with-

An upper bound o/ o for an MBC jammer is obtained SPacing(B + 1)-decoder-with-memory inpfior B = 2000.
with the periodic quantized dump jammer with period and To close this subsection, we explore another philosophy for
number of packets per quanta both equaﬁq + 1. Let jammers. The idea is for the jammer to try to make the output

B process as random as possible. For example, the jammer might

¢ =+ (i—1) <{—J + 1) like to output a stream of independent, meaBernoulli vari-
2 . .. . .
ables, regardless of the input. Of course, this is not possible since

which is theith dump slot. If the jammer has? | or fewer the buffer can become full or empty. A reasonable fix would
packets in its buffer ap; including the arrival in that slot, then pe for the jammer to adjust the output probability as a func-
the jammer holds all packets ungil; and at most3 packets tion of the buffer size. For example, consider a jammer that in
will be in the jammer just beforg; . . If, instead, the jammer any sloti outputs a packet with probability*, wherek is the
has more tha 2 | packets in its buffer ap;, then the jammer number of packets in the buffer at the beginning of the slot, in-
will release one packet in each slot during the period fedm cluding the new arrival, if any. However, this is apparently not a
to just beforeg; 1 and the total buffer size will not increasegood jammer strategy, at least tBrlarge. Indeed, this jammer
before¢; 1. Hence, this jamming strategy will never hold overs equivalent to the generalized billiard ball channel of Berger
more thanB packets and it is an MBC jamming strategy. Thes).
jammer output is eithe¥ or | £ | +1 packetsin &[5 | +1) in- In Berger’s model, the coder adds a red or white ball to a bil-
terval, so the output can be considered a discrete binary prooggsi table at the beginning of each slot, and the channel output
taking value) or | £ | + 1 at eachp,. The entropy rate for the s a ball selected from the table, with all balls having equal
output will be maximized if the outputs at the dump slots afgrobability. The equivalence can be seen by mapping slots with
independent. The mean number that should depart at@gash packets to red balls, and idle slots to white balls. It can be shown
A(|£] + 1) since the arrival rate i3. Hence, the output en- [6] that for large B the capacity of the channel is at least as
tropy rate and therefore thein-max information rate for the |arge as a constant timeé8~ %. For largeB, this far exceeds
channel model, is upper-boundedias p < L%(JAJ)rl < 22 the capacity upper bour$% for the periodic quantized dump
The bound is illustrated in Fig. 18 fd8 = 2000 packets and is jammer described above. Roughly speaking, the generalized bil-
labeledperiodic quantized dump jammer liard ball channel can allow the coder to reliably convey infor-

Fig. 18. Bounds on information rate for MBC jammeEs,= 2000.
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mation by causing small fluctuations in buffer size over shor
time intervals.
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-=- UB: Periodic—quantized dump jammer with period 1. D, jammer knows A
— UB (Packet): Periodic dump jammer with period D

-+« LB (Fluid): Poisson-like input with real batch size

~+- LB: Poisson-like input with integer balch size

@
o
T

VI. ADC JAMMERS

The class of ADC jammers is considered in this section.

©
T

A. ADC, Continuous-Time Fluid Model

By Theorem 1.2,V ok andV .~ are each given by a con-
stant divided byD. The upper bound oW -z and the lower
bound onV . that are obtained for the strategies we preser =
differ by a factor of abous.

Chooser such that) < ¢ < % and consider the class of
rate A £ ¢ input processeg’r .. An upper bound oY o for
an ADC jammer is obtained with a periodic quantized dumf . . . . .
jammer with periodL D, quantized toxAD, whereL = 1 — ° ' AD
>\ 6’ and0 < « < 1. The constant is chosen to obtain the Fig. 19. Normalized information rate (bits/unit delay) for an ADC jammer,
smallest upper bound. Note thidile jammer must know for it continuous-time packet waveforms or continuous-time fiuid waveforms.
this strategy. We will first show that a periodic quantized dump
jammer with period. D, quantized tax\D, is an ADC jammer
for continuous-time fluid waveforms.

For a drop of fluid, the time it spends in the system can
be broken into two parts: 1) an initial delay equal to the time
from its arrival until the first dump time after its arrival, and
2) a carryover delay equal to the time that the fluid waits from
the first dump time until the last dump time that the fluid is iliminf inf Ir(X, W)
the system. Since the spacing between dump timégisthe *—°° WeWr
largest amount of initial delay experienced by a drop of fluid is S A <)\77 D_, < 1 _\L]>> 28)
LD. The average amount of type 2 delay experienced by a drop =k
of fluid is at most“m by Little’s law, since less than\D
units of carryover f|UId is in the buffer at any time. Therefore

Information rate (bits/unit_delay)
o b
T
L

-
n
T

-
T

o5k 7/ Ui L S e e e B S 5L 2 e o o o B S o B

Theorem VI.1: Assume continuous-time packet waveforms
or continuous-time fluid waveforms. Givén 1T" > 0, let X be

a Poisson-like input with batch siZzewith packet arrival rate
F)\T/kj k/T, and letWy be a class of ADC jamming channels
n [0, T]. Then

wheren > 0 can be chosen to maximize the bound. The batch

QDA _D élzek may be chosen to be any real- valued posmve number in
fime units. the continuous-time fluid model. Taking= = AD andg = ;
The maximum information rate for a rakenput process and - 1 s
the periodic quantized dump jammer is upper-bounded by the Ver2 . Sauc};w Y 108 </3 <1 T3¢ " )) (29)
maximum jammer output entropy rate. The jammer has batch o
outputs every D time units where the batch sizeli®r a posi- -, 0-5615 bits (30)
tive integer multiple ok AD. The average batch size must be at D

mostL(A+¢)D units of fluid since the batches occur evérl?  which holds for all\ > 0with optimum batch sizé ~ 2.15\D.
time units and the packet input rate is at mast ¢. Arguing The bound of (30) is illustrated in Fig. 19 of Section VI-B and
as in the proof of Theorem 1V.1 yields that the maximum outpy labeledPoisson-like input with real batch size

entropy rate for a periodic quantized dump jammer with period

LD, quantized tax\D is given by H(Geoo( “2F2))/(LD). B. ADC, Continuous-Time Packet Model

Minimizing this expression with respectdcand taking the limit
ase tends ta0 yields an upper bound fdr . The optimizing
« tends tol/2, and the bound is

An MDC jammer for maximum delayD is also an ADC
jammer for average dela®. In particular, a periodic dump
jammer with periodD satisfies the MDC constraint. Therefore,
4 bits a slight modification of the proof of Theorem IV.1 to account

Ver £ for the ADC input constraints, implies that
Theorem II1.5 guarantees that (27) is also an upper bound on Vep < H(GeOO(D)‘))_
Vep for ADC jamming channels. - D

Many of our best input processes attempt to force the outputAnother upper bound was already mentioned in Sec-
to allow good prediction of the input at the expense of usirtgpn VI-A. A jammer that quantizes output batch sizes (using
input processes that are closer to deterministic, especially wiihowledge of the input rat&) yieldsVep < Ver < %. The
respect to timing. Our best input process for an ADC jammer fowo upper bounds are pictured in Fig. 19. The periodic jump
continuous-time fluid waveforms, however, takes the opposjEmmer gives the tighter bound for smalD, whereas for large
approach and selects fluid departure times at random. We fikdD, when batches tend to be large, a jammer that quantizes
state the following theorem which is proved in the Appendix. output batch sizes is better.
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For a lower bound otV 5, we can use the Poisson-like- Sent “101”
input with batch sizé: from Section VI-A with batch sizé& Inputrat;:n:tmtiﬁnsiglé ! 0 !
an integer. More precisely, select an intege¥ 1 to minimize ! I ;l
the right-hand side of (28). This lower bound is illustrated in 22L L oL 2AL
Fig. 19 and is labeleBoisson-like input with integer batch size P ;

: o Received “011™

C. ADC, Continuous-Time, Rate-Constrained Fluid Model  gate at which fluid 0 RS | Pl

An upper bound off’ z for an ADC jammer is obtained with > 24 Gt ] I
a periodic quantized dump jammer with peribd, quantized AL — € AL +e o)L

to A D similar to that of Section VI-A, wheré and« are care-

fully chosen constants depending bandD such thatl./(«A)  Fig- 20.  Symbol errors caused by delay.

is an integerl. = 2 (1 — ), and0 < o < 25=. For this

strategy, we assume that the jamrkeows the nominal rat&  packet arrival raté \7'/k |k /T and letWy be the class of ADC

of the input processWe will first show that such a jammer isjamming channels. Then for eagh> 0,

ADC and then give an upper bound on the maximum informa- _

tion rate for this jammer. liminf inf Ir(X, W)

The average delay experienced by fluid in this jammer can

be obtained in the following way. For a drop of fluid, the time > AN A log <77_1(1 _ 77)_% P <l 77)) (32)

it spends in the system can be broken into three parts: 1) the Tk k A’

time from its arrival until the first dump time, 2) the time from _ (1—n)*

the first dump time until the last dump time the fluid is in the/heree(s, n) =1 - 5=~

system (this is the carryover period for the drop of fluid), and For continuous-time, rate-constrained fluid waveforms, we

3) the time from the last dump time until the departure of th@ay choose the batch sizeo be real-valued. Maximizing (32)

drop of fluid. The type 1 delay is at mo&tD time units since with respect tok andn, we obtain a lower bound oW

dump times have spacingD. The average type 2 delay is atwhich is illustrated in Fig. 21 of Section VI-D and is labeled

most <22 by Little’s law, since, the amount of fluid carriedBernoulli-like input with real-valued batch size

between any two dump times is less thahD, and the arrival ~ Next, we present a coding scheme that gives a lower bound

rate is at leash — ¢. Finally, the type 3 delay for the drop of on capacity for an ADC jamming channel for continuous-time,

fluid is on average at moétz2 since the drop may depart at anyrate-constrained fluid waveforms.

time in theL D interval. Thus, the mean delay is at most For this coding scheme, we take a time interval of lenggth
LD +LD/2+ aD)\(\A—¢) =D to rgpresent a single C_hannel use, and gss_hmet/Z._To send

a binary 1, we transmit2AL units of fluid in the L interval,

and to transmit a binarg we transmit zero units of fluid in

an L interval. The decoder decides that avas transmitted if

it seesAL units of fluid or more in arl interval, and & was

so the jamming scheme is ADC.
The mean number of quanta of siza D transmitted at each
dump time is at most

_LA+9D _ LOA+ &)/(a)) transmitted if it sees less thaxd. units of fluid. Note that we
aAD are assuming the coder and decoder have access to a common
and the largest number of quanta that can be transmitted igick.
most Given a large even integé¥, the set of codewords is a subset
LD L of the length/V binary sequences with normalized weight (frac-
oD a\ tion of 1's) equal tol/2. The code waveforms have duration

N L. The decoder makes symbol-by-symbol decisions, and then
the resulting received binary sequence is decoded to the nearest
H (Geoé‘/(“) (%)) codeword. As illustrated in Fig. 20, if an amount of fluid, + ¢

D (31) is delayed byl. — AL — ¢ time units, then two bit errors can re-

By Theorem I11.7.V rr > V pp s0 the bound in (31) also holdssult. The product of the amount of fluid moved and the delay is

for discrete-time packet waveforms. The bound in (31) is illué:—z‘1 ﬁt;)u(sLe_;\nL;ri())}N&g?etggé\rmisﬂilﬁézgIgf- ier:?r/sp\:\(/)(iijlgt o
trated forD = 8 in Fig. 21 of Section VI-D for optimal. and ' > any

: I . . : . _guire a total fluid-delay product of at leasL?(1 — \)/2 per
o anq is labeleperiodic quantized dump jammer with perlocjgrror. On the other hand, the ADC constraint ensures that there
LD, jammer knows\.

. . is at mostALN D fluid delay per codeword, so the number of
To obtain a lower bound ok g, we use a Bernoulli-like- : oD
. X : / . . errors per codeword is at mogi = N.
input with batch sizé:. The following theorem is proved in the . - - .
) By choosing the set of codewords so that the minimum dis-
Appendix. . . i
tance of the code is at least twice the maximum number of er-
Theorem VI.2: Assume continuous-time, rate-constrainetbrs per codeword, the decoder can make error-free minimum
fluid waveforms or discrete-time packet waveforms. Givedistance decisions. The Gilbert—Varshamov bound guarantees
k > 0and7 > 0 with T/k an integer, letX be a that for N large enough, a binary code with relative weight

Bernoulli-like-input with batch sizek over [0, 7] with 1/2, rate R, and minimum distanceN exists, provided? <

Arguing as in the proof of Theorem V.1 yields

Vrr <
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o7 ’ ' ' ' ' ' ' ' by consideration of a fill-alternating periodic dump jammer in
U (packety P altemaing oo dump oot witkparod B Section IV-D is also an upper bound & » for ADC jammers.
oeprrr " LB Bomoulcihe inouk itk integer-valued batch sze. l In addition, from Theorem 111.7, any upper boundGi - for
-~ LB{Fl): Glben-Yereh an ADC jammer is an upper bound b » for an ADC jammer.
o8y Thus, for the case whethe jammer knows the input packet
g transmission rate\, we may use the periodic quantized dump
Sodr ] jammer with periodLD, quantized taxAD jamming strategy
g P el of Section VI-C by preceding that jammer with a fluidizer and
‘goa - 7 RN K 1 following the jammer with a trigger packetizer and slotter as in
£ // AN Fig. 7.
ozr [/ AN 1 For a lower bound oY 5, we can use the Bernoulli-like
/ \-\.\ input with batch sizek, discussed in Section VI-C, whefe
oaf/ -\\ . is taken to be an integer. Maximizing the bound of (32) with
,ff'*"*'""“"*-'-*'--»w...*u,* ‘.\ respect tok andn wherek is an integer, we obtain the corre-
ol i feiedted ettt SRS il A1 ST FHPPRNE sponding lower bound which is illustrated in Fig. 21 for= 8
0 01 0.2 03 04 ois 06 07 08 0.9

slots labeledernoulli-like input with integer-valued batch size

Fig. 21. Information rate for and ADC jammer wifh = 8, for discrete-time
packet waveforms or continuous-time, rate-constrained fluid waveforms. VIIl. DISCUSSION

In this section, we summarize the results. In particular, we
log(2) — h(p). Then takingy = Lé—’fw for6 > 0andN large give rules of thumb for jammers, rules of thumb for inputs, and
enough, we choose a collectionf such codewords from the numerical examples. In addition, we discuss the use of the ideas

collection of binary sequences, where from this paper in developing timing channel coding schemes
1 4D for use on the Internet.
oo M > loo(D) — =
NlogM_log(2) h<L(1—)\)) )

A. Summary of Results

S.mceM. symbols can be transmitted without error evéry Table | summarizes all of the jammed timing channel models
time units that are considered in this paper. In the table, the asymptotic be-
log2 — h ( 4D ) havior for the saddle-point information rate (if a saddle point
C > LN (33) exists) and for capacity is described in terms of stanéarb-
- L tation where®(g(n)) represents the set of functions

for ADC jammers. The time length for a symblotan be chosen {f(n)
to maximize the bound in (33).
A slight improvement to this bound on capacity can be made cg(n) < f(n) < exg(n) foralln 2 no}.

by choosing codewords with relative weight< w < 1 and  Taple Il summarizes the good jamming strategies we have
transmitting a binaryl using2% units of fluid in anL interval  found for each of the jamming channel models and Table Il
with probability w and a0 with no fluid in an L interval with  summarizes the good input strategies we have found for each of
probability 1 — w. We obtain a lower bound depending &0  the jamming channel models.
w, A, andD which makes use of a version of the Gilbert-Var- |n every model considered, the best jammers that we have
shamov bound for weighted codewords that guaranteesyforfound are those that have some sort of quantized batch depar-
large enough, a binary code with relative weightrate R, and  tures at regular intervals. By only allowing outputs at regular
minimum distance NV exists, provided intervals, the jammers eliminate much of the output uncertainty
. p p derived from timing. By requiring quantized output, the jam-
R < h(w) —wh (2—) -1 —wh <m) mers eliminate much of the output uncertainty derived from
variations in the output intensity.
The bound can then be optimized oveandw and is nonzero  since jammers of this type are generally deterministic, the in-
for 0 < A < 1. The weightl/2 version of the bound is illus- formation rate between a particular coding scheme input and the
trgted in Fig. 21 of Section VI-D foD = 8 slots and is labeled output of the jammer is given by the output entropy rate. Such
Gilbert-Varshamoy a jammer would want to make the output entropy as small as
) ) possible, and thus, quantized batches at regular intervals make
D. ADC, Discrete-Time Packet Model sense.

In this subsection we give the jamming strategies and inputFor many of the waveforms and jammer constraints consid-
processes for ADC jammers for the discrete-time packeted, the best inputs and coding strategies that we have found
waveforms. The bounds for the discrete-time packet waveformuse those that have batch arrivals at regular intervals. If infor-
and continuous-time, rate-constrained fluid waveforms aneation were encoded in the input on a finer time scale it would
illustrated in Fig. 21 forD = 8 slots. be easily concealed by a jammer anyway. Another benefit of

An MDC jammer is an ADC jammer. In particular, the uppethese batch strategies is that by spacing the batches at regular
bound onV pp for MDC jammers obtained in Section IV-D intervals with large enough spacing between batches, error-free

: there existg:y > 0, ¢3 > 0, ng > 0 such that
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TABLE |

SUMMARY OF CAPACITY AND INFORMATION RATE RESULTS

‘Waveforms

Jammers

Continuous time
fluid waveforms

Continuous time
packet waveforms

Continuous time,
rate-constrained fluid
waveforms

Discrete time packet
waveforms

Maximum-delay-
constrained

Subsection IV.A.
C=V = _Y. = 00.

Subsection IV.B.
Saddle point.
C=V=V.Cis
B(log D/ D).

Subsection IV.C.
C=V =V =o00.

Subsection IV.D.
C<V=Y.V and
V are ©(log D/D).

Maximum-buffer-
constrained

Subsection V.A.
C=V =V =oc0.

Subsection V.B.
C=V =V =o0.

Subsection V.C.
CLV.C,V,and V¥
are ©(1/B).

Subsection V.D.
C<LV.C, V,and V.
are ©(1/B).

Average-delay-

Subsection VLA,

Subsection VL.B.

Subsection VI.C.

Subsection VI.D.

constrained C<V.VandVare | C<V.VandVare | C<V.VandVare | C<V.Vand V are
&j)ammer knows ©(1/D). ©(1/D). e(1/D). o(1/D).
TABLE I
SUMMARY OF JAMMER USAGE
Waveforms
. . : . Continuous time . .
Continuous time Continuous time N ', Discrete time packet
fluid waveforms packet waveforms rate-constrained fluid waveforms
waveforms
Jammers

Maximum-delay-
constrained

Irrelevant — infinite
capacity.

Periodic dump
jammer with period

Irrelevant — infinite
capacity.

Fill-alternating
periodic dump
jammer with period
D.

Maximum-buffer-
constrained

Irrelevant — infinite
capacity.

Irrelevant — infinite
capacity.

Periodic quantized
dump jammer with
period B/2
quantized to B/2.

Periodic quantized
dump jammer with

period L%J +1,
quantized to '_%J
+1.

Average-delay-
constrained (A

Periodic quantized
dump jammer with

Periodic quantized
dump jammer with

Periodic quantized
dump jammer with

Periodic quantized
dump jammer with

known}) period LD, period LD, period LD, period LD,
quantized to aAD, quantized to aAD, quantized to aAD, quantized to aAD,
L=(1-a), L=(1-a), L/(a}) an integer, L/(aX) an integer,
0<a<l. 0 < a < 1. (Followed L=(2/3)(1 - ), L=(2/3)(1-a),
by trigger and 0 < a < 1. and0 < a <1
packetizer.); Periodic (Preceded by
dump jammer with fluidizer, followed by
period D for small trigger packetizer
AD. and slotter.)
Average-delay- Unknown. Periodic dump Unknown., Fill-alternating

periodic dump
jammer with period

constrained (A
unknown)

jammer with period

decoding can often occur in the case of MDC or MBC jammerso other traffic is on the link, and that discrete-time packet wave-
Thus, the information rate between the input and output is eqdiatims are used with time divided into intervals of lengtir1&
to the entropy rate of the input and we can select batch strateggash. In addition, assume that any delay introduced beyond that
with maximum entropy. introduced by a jammer is known to both the transmitter and re-
For ADC jamming channels, the best strategies that veeiver. Take the long-run transmission rate to\be 1/3, cor-
have found use quantized batch arrivals, but the batch tintesponding to a base packet channel bit rate of 33.3 Mb/s. The
are chosen randomly rather than occurring at determinist@ggpacity of this timing channetithout a jammeiis given by
regularly spaced times. However, we cannot say with muélil/3)/10~* ~ 9200 b/s, corresponding to a transmitter that
confidence that this type of input is good for ADC jammindgransmits a packet in each slot with probability3, indepen-
channels (especially for discrete packet waveforms) since tthently of other slots.
gap between the upper and lower bounds is so large. Sections IV-B-VI-B provide upper bounds &nand lower
bounds oV for various constraints on the jammer. For raf8
input processes and MDC jammers with maximum delays 2 ms,
20 ms, 200 ms, and 2 s, MBC jammers with maximum buffer
Suppose a transmitter tries to covertly use packet timing ova@ezes 20, 200, 2000, and 20000, and ADC jammers with av-
a 100-Mb/s link with 10 000 bit packets. For simplicity, assumerage delays 2 ms, 20 ms, 200 ms, and 2 s, we present bounds

B. Numerical Example
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TABLE 1l

SUMMARY OF INPUT USAGE

(real-valued) when it
sees > B 4 1 units.

(real-valued) when it

sees > B + 1 packets.

Waveforms
Continuous time Continuous time Son;u;:oau's et:in:’. 4 Discrete time packet
fluid waveforms packet waveforms rate-constrained ful waveforms
waveforms
Jammers
Maximum-delay- Batch-with-spacing- Geoo(AD)-batch- Batch-with-spacing- Geoy (A\(L + D))-
constrained D input, real-valued with-spacing-D. D input, real-valued batch-with-gpacing-
batch size. batch size. (L + D).
Maximum-buffer- Send 2B + 1 units at Send 2B + 1 packets Batch-with-spacing- Batch-with-spacing-
constrained once, decoder at once, decoder (B+1) (B+1)
recovers exact time recovers exact time input. input.

Average-delay-
constrained

(A known or
unknown)

Poisson-like-input
with batch size &
with k& real-valued.

Poisson-like-input
with batch size &
with k
integer-valued.

Bernoulli-like-input
with batch size &
with k real-valued.

Bernoulli-like-input
with batch size k
with &
integer-valued.

TABLE IV
DISCRETETIME NUMERICAL EXAMPLE (100-Mb/s LNK, 33.3-Mb/s HOST STREAM BIT RATE, 10 000 BTS/PACKET)

Delay
(Buffer
Size)
Jammers D=2 ms D=20 ms D=200 ms D=2,000 ms
(B=20 packets) (B=200 packets) (B=2,000 packets) (B=20,000 packets)
UB [ LB UB | LB UB | LB UB | LB
No Jammer 9183 bps
Maximum-delay- 1985 1073 358 188 52 28 6.9 3.7
constrained bps bps bps bps bps bps bps bps
Maximum-buffer- 875 437 91 45 9.2 4.5 0.92 0.45
constrained bps bps bps bps bps bps bps bps
Average-delay- 2066 138 207 13.8 20.7 1.38 2.07 0.138
constrained bps bps bps bps bps bps bps bps
(A known)
Average-delay- 1985 138 358 13.8 52 1.38 6.9 0.138
constrained bps bps bps bps bps bps bps bps
(A unknown)

in Table IV. Note that the delays correspond to 20, 200, 2008 saddle point for an MDC jammer for continuous-time packet
and 20000 slots since the slots are 1. The results show, waveforms. In addition, for all of the other models considered,
for example, that for an MDC jammer with maximum delay ofeasonably tight bounds on the information rate for saddle points
20 ms, jamming strategies exist for which no coding stratedpave been provided. In many cases, channel capacity has been
can exceed 358 b/s through the jammer. Additionally, for ral®unded and relationships amofig}’, andV have been illus-

1/3 coders and MDC jammers with maximum delay 20 mdrated. Table | in Section VII-A summarizes the results.

coding strategies exist for which at least 188 b/s can be trans-

mitted, regardless of the particular choice of MDC jamming- Further Research

strategy. Thus, if saddle-point strategies exist for this example e list potential areas of further research below.

the saddle-point information rate with such strategies is between
188 and 358 b/s for MDC jammers with maximum delay 20 ms
and link utilization of1/3.

As can be seen from the table, for relatively small delay or |,
small buffers, the maximum rate at which information can be
transmitted using the timing channel in the presence of good
jammers is reduced significantly.

» Tighten bounds for existing model¥Ve have found

a saddle point only for the MDC jammer for contin-
uous-time packet waveforms.

Investigate other versions of the jammed timing channel
problem There are many other versions of the delay
channel problem we can investigate. For example, we
could consider other input classes such as (hep)
upper constrained inputs [11].

» Consider a statistical model for jammelsvestigate the
timing channel for statistical jammers, such as the Pump
[29], [20].

Investigate other covert channelEmbedding informa-
tion in timing is one of many ways that information may
be hidden. For packet channels, there are many ways

C. Conclusions

The primary conclusion of this work is that timing channel
jammers which use batching and quantizing schemes with de-
terministic batch departure times generally perform well for the
models considered. One such jammer channel and a batch input
process with deterministic batch arrival times were shown to be
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that information may be hidden such as modulating ttequation (34) follows becausgs( di,....dy) = % Let
packet length, modifying packet headers, or purposely — (Dl, .. DN) represent a vector of independent, expo-
introducing bit errors. nential random variables with common mean- 0. The joint

« ImplementationsA covert timing channel jammer coulddensity ofD restricted to{d e Ry

L SN d; < D} satisfies
be implemented for Internet traffic. Such a jammer could

. . . - 1 _ivywv g 1 b~
be incorporated into a network firewall. Ifpldy, .. Ldy) = —e T L > e
n n
APPENDIX Therefore,7Ne ™ fy(dy, ..., dy) > 1 on this set, so (set

=0
A. Proof of Theorem VI.1 Yo )

By construction, the number of batches in the inpitis |4, < // Liryn Nt
given by N = |AT/k]. Since batches are transmitted instan- [0, T]¥

taneously and the batch sizes are the same, only the batch trans- fp (di, ..., dy) ddy---ddy
mission times are informative. Denote the arrival times ofthe -
batches off asX;, X, ..., Xy. LetY represent the output <V p <0 <y - D 5~y2 - D2>
of someW € Wr whenX is the input (first pass the jammer <. <yy—-Dn<T
output through a trigger packetizer that groups fluid itsized - b .
“packets”). Without loss of generality, we assumelélpackets <new P (0 <y — Dl)
are output by timé@". Thus, the outpul” can be represented by R R
the batch arrival times of the outp(it7, ..., Yy). P (y2 — Dy >y — Dl)
Let ~ ~
S={(z1,...,an):0<z <2< <y < T} P (o = Dy 2 yw-1 = D) (35)
The joint density fo X7, ..., Xy) is given by%\—fv’ on.S and _ n DN s iy L o (yipa—w)/n
zero outsideS by the input construction. Thus, the entropy of =nerm (- ) 1_[1 <1 T 5°¢ )

X relative to the Lebesgue measure%fh’ is given by

PR TS )
TN log Tw d cdoy
N N DN |:N10g<1—%€% Zj'\]_ol(yi+lyi>/77>:|
T Sn]\e n e (36)

Now lety € S. Think of 4 as a particular output for some <N C[N(log(l_% eiv))} (37)
jammer inWr and some inpui € S. Let N

Ay ={x € 5: W, =y for someW € Wr}.

= log — N

where (35) follows because the evepnt- D; > y;—1 — D;_
can be rewritten ag; = (D; < y; — yi_1 + D;_1) and the
ThenA, represents the set of inputs$hfor whichy is a valid event

output under some jammer Wz. The distribution supported —{o< _D

by A, with the greatest relative entropy is the uniform distribu=2— " =¥~ "71> ~ ~ ~
tion over the set. Thus{ (XY = y) < log |4, sincelog |A,| Y1—Di1<ys—Ds, .oy yira=Dia <yi1—Dia}
is the relative entropy of a uniform distribution oky,. There-

simply implies a random upper bound &n_; that is indepen-
fore, we have that ply Imp PP oh_, p

dent of D; and D;_; so thatP(E,|E,) < P(E,). Equation

H(X|Y) < max H(X|Y =y) < maxlog|4,]|. (36) follows by Jensen’s Inequality becgl]hsg(l —Le/d)is
Y Y concave inr and (37) follows becausEﬁ\‘:_ojL (Yiv1—vi) < T.
Fix an outputy and letD = (Dy, ..., Dy) be independent Since this bound does not dependzowe have that

uniform random variables o), 7']. We have that
4, =TVP (y—D € 4,)

r DN 1 T N
r = = — —~ < 3 Ne™ — —¢ Ny
://[ ] 1{R}T’\f3(d1,...,dN) ddy ---ddy —103<77 ¢ <1 5 ¢ ) )
0, TV
_ _ Therefore, we have that
2//[ liry ddy ---ddy (34)
0, TN

i ; DN 1 \N
: . : : I I(X;Y)>log=— —log [nNe ™ (1-Z¢ ™
wherel g, is the indicator function taking valueif R is true ( )z los NT %8 <77 ¢ < 2 ¢ ) )
and0 otherwise, with

H(X|Y) < max log|A,
(X] )_{gg} og |Ay|

N
1 - — —
R:{N E dv‘,SDaOS?JI_dIS"'Syl\’_dl\’ST}-

=1
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Using a Stirling bound#! < v/2r nt1/2e—7 /020y 'we Forl < k< N —1

have that ~ ~
v P |:yk - Dp <ypy1 — Dk+1:| = ¢(Yr41 — Yrs 1),

T

- whereg(u, 1) = 1—$0° Also, Ply1— Dy < 1] > ¢(y1, 7).
Nnexp % -1 (1 —3c ND) The functionlog ¢(u, 1) Is concave in for « > 0, so arguing
los (/3 NY/26H/(12N) as in the proof of Theorem V1.1 yields
- Og( s e ) .

I(X;Y)> Nlog

N
—1 _D T
SubstitutingV.- = | \7T’/k| and taking appropriate limits yields [4y] < <77 (I=n)"%¢ <k_N’ 77)) : (41)
(28). = Combining (38) and (41) yields that fdar sufficiently large
(XY A A _ D 1
B. Proof of Theorem VI.2 ( - ) > (k) -2 log <77 L1 —n) D & <X7 77))) e
The proof of Theorem VI.2 closely follows the proof of The- - ] N . o
orem VI.1. Each batch is of sizeand there ar&V = [\T/k| Tr?\kmg appropriate limits yields (32), which can be optimized
batches in the inpu . TheT slots are divided intd@”/k super- With respect ta andk. -
.SIOtS’ wh_ere e_|ther no packets or a complete batc_ihp_uick_ets C. Jammers Satisfying Relaxed ADC Constraints
is transmitted in each super-slot. Only the transmission times of
the batches are informative, and we write, 1 < ¢ < N for The particularly strict constraints considered for ADC jam-
the super-slot in which thih batch is transmitted. ming channels were chosen for technical reasons (for example,
LetY represent an output process for ingltand a jammer SO thatC’ < V). Looser constraints for ADC jamming chan-
in Wr. Since packets are sent in complete batches, it is to thels are that for any” > 0, inputs are in the clasdr =
jammer’s advantage to keep packets in the batch together wHife: E[X(T)] = AT}, whereX(T') is the number of packets
respecting super-slot boundaries. Without loss of generali$p to timeZ” and jammers are in the class

we assume that the output of the jammer is in that form since 1 X(T)
a trigger packetizer which groups packets into batches and a Wr={ W:E | —— Z D,| <D
slotter which aligns batches with super-slot boundaries could X(@) i=1

be used at the jammer output. Similarly, since the decodgfere p, is the delay added to théh packet. These relaxed
knows that allV batches are input to the jammer by tifi¢it  oongiraints allow us to consider a periodic dump jammer with
is to the jammer’s advantage to output Allbatches by time period2D as an ADC jamming channel with delay parameger

T. LetY; represent the departure super-slot of ffeoutput 5iher than being restricted to spacify In this appendix, we
batch. Thus, botk and” are distributed in the set discuss jammers and inputs for these ADC jamming channels

S—doecaril<m <o o <an< r under these relaxed constraints.
N =t ? N=T%[" As can be seen in Theorem IV.1, the maximum information

We will use the factthak(X;Y) = H(X)— H(X|Y). Since rate If(c()é th((a%pg)r)iodic dump jammer with pe-ridlD is.given
X is uniformly distributed overS, given anye > 0, if Tis 2Y ~— ap - The Geog(A2D)-batch-with-spacing:
sufficiently large then and the compound-Poisson inpunaximize the information
through a periodic dump jammer with peri@d. The com-
H(X) =log <<T/k>> > r (R(X) — €). (38) Pound-Poisson input transmits batches of packets at times
N Tk chosen according to a Poisson process with katerhere the
Giveny € S, letA, = {x € S: W, = y}. ThenH(X|Y) < batch sizes are distributed according to

max, log|A,|. Fory € S and log(A+1
R:{%Zdis% 0Syr—di < <yy—dy < %} and L
i=1 mk) = = ()% ke{l, 2 ..}
Ak A41
|4y| = > 1{ry- (39)

with a mean batch size df

defo,..., L1}~ . . . .
Another jamming channel is th@oisson random ruler

Given0 < 1 < 1,letD = (D1, ..., Dy), where theD;’s are which i§ based on a collection of dump times chosen according
mutually independent anB[D; = j] = n(1 — )/ for j > 0. 10 & Poisson process where gll packets_ln the buffer at a glump
On the set{ &+ SN 4 < DY the probability mass function time are released. In this setting, the arrival rate for the Poisson
5 satisfies process is} so that the average delay for packets passing
. . D through the jammer i$. An upper bound on the information

N =) fp(d) = (L=t F T > 10 (40)  rate for this jammer i€/(Gen L) \which is also the maximum
Multiplying each term in (39) by the left-hand side of (40) yielgdformation rate for a periodic dump jammer with peribd

. . A memoryless server queue jammer satisfies the delay

|4y] < N (1) F constraints assuming a Poisson input process. Anantharam and
T Verdu [3] discuss a memoryless server queue as a delay jammer.

Pllsy-Di<--<yv-Dy< % |~ The drawback of this jammer is that there is no guarantee on
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Fig. 22.  Bounds on normalized information rate (bits/delay) for relaxed ADC

jamming channels. [20]
the maximum or average delay for most inputs. However, fog,,
the Poisson input, we can choose the service rate of the queue
based on the arrival rate and the desired average delay. Tl
; ; s i - 14AD
information rate for the\/ /M /1 queue is given by log J;—D. 23]

Under the relaxed ADC constraints, we can consider a
Poisson input rather than the Poisson-like input. The lower

: . : L [24
bound for the Poisson input is the same in this case.

Bounds onnin-max andmax-min information rate for these
jammers and inputs are plotted in Fig. 22. In particular, note thé5]
gap between the lower bound on the minimum information rate
for the Poisson input, and the maximum rate for the periodic
dump jammer with perio@D. Assuming no duality gap, the [26]
value of the game is between these two bounds. Also note the
difference between the periodic dump jammer with petidtl  [27]
which can only be used for the relaxed ADC constraints, and28
the periodic dump jammer with periad which works for the (28]
regular ADC constraints.

[29]
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