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Community detection in networks

Networks with community structures arise
in many applications

Collaboration network: [Girvan-Newman ’02]

Task: Find underlying communities based
on the network topology
Applications: Friend or movie
recommendation in online social networks

Cluster recovery under stochastic blockmodel

Vast literature on stochastic blockmodel [Holland et al.
’83] and planted partition model [Condon-Karp ’01]:

[Bickel-Chen ’09] [Rohe et al. ’10] [Jin ’12] [Mossel et
al. ’12] [Mossel et al. ’13] [Mossel et al. ’14] [Cai-Li’
14] [Guédon-Vershynin ’14] [Arias-Castro-Verzelen
’14] [Lei-Rinaldo ’14] [Le-Levina-Vershynin ’15] . . .
[Karrer-Newman ’11] [Decelle et al. ’11]
[Nadakuditi-Newman ’12] [Krzakala et al. ’13 ]
[Saade et al. ’15] . . .
[McSherry ’01] [Coja-Oghlan ’10] [Chaudhuri et al.
’12] [Ames ’12] [Chen-Sanghavi-Xu ’12] [Heimlicher
et al. ’12] [Anandkumar et al. ’13] [Lelarge et al. ’13]
[Massoulié ’13] [Vinayak-Oymak-Hassibi ’14] [Abbe
et al. ’14] [Yun-Proutiere ’14] [Abbe-Sandon ’15]
[Chin-Rao-Vu ’15] . . .

This paper focuses on a single community
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One cluster of size K plus
n − K outliers
Connectivity p within
cluster and q otherwise
Also known as Planted
Dense Subgraph model
p = 1, q = γ corresponds
to Planted Clique model

Planted clique hardness hypothesis

H0 : Bern(γ) vs H1 : Bern(1)
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[Alon et al. ’98] [Dekel et al. ’10]
[Deshpande-Montanari ’13]...
Intermediate regime: log n� K �

√
n, γ = Θ(1)

detection is possible but believed to have high
computational complexity: [Alon et al. ’11] [Feldman
et al. ’13]...
many (worst-case) hardness results assuming
Planted Clique hardness with γ = 1

2
detecting sparse principal component
[Berthet-Rigollet ’13]
detecting sparse submatrix [Ma-Wu ’13]
cryptography [Applebaum et al. ’10]: γ = 2− log0.99 n

Hardness for detecting a single cluster

Assuming Planted Clique hardness for any
constant γ > 0 :
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Main result: Detecting a single cluster in the
red regime is at least as hard as detecting a
clique of size K = o(

√
n)

Hardness for recovering a single cluster

Can show: Hardness of detection implies
hardness or recovery, so:
Assuming Planted Clique hardness for any
constant γ > 0 :
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Corollary of main result: Recovering a single
cluster in the red regime is at least as hard as
detecting a clique of size K = o(

√
n)

About the spectral barrier
[Nadakuditi-Newman ’12]
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Eigenvalue distribution of A−q11>
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σ =
√

Kp + (n − K )q

Conjecture [Chen-Xu ’14]: no
polynomial-time algorithm can recover
beyond the spectral barrier. (Our corollary
partially resolves this conjecture.)

Formal statement of hardness of detecting a
cluster

γ: edge probability in Planted Clique
Theorem

Assume Planted Clique Hypothesis holds for
all 0 < γ ≤ 1/2. Let α > 0 and 0 < β < 1 be
such that

α < β <
1
2

+
α

4
.

Then there exists a sequence {(N`,K`,q`)}`∈N
satisfying lim`→∞

− log q`
log N`

= α and
lim`→∞

log K`

log N`
= β such that for any sequence

of randomized polynomial-time tests φ` for
the PDS(N`,K`,2q`,q`) problem, the Type-I+II
error probability is lower bounded by 1.

Proof requires a polynomial time reduction

An×n ÃN×N

H0 :

H1 :

vs vs

Bern(γ)

clique
K

h : 7→

Bern(p)

K

Bern(q)

Need h : A 7→ Ã agnostic to the clique and
computable in polynomial time.
Given an integer `, two probability
distributions P,Q on {0,1, . . . , `2}

• • • • •
• • • • •

•
•

Split each node
into ` new nodes

N = n`,K = k`

`

`
0 Q7→Assign edges with

distributions P,Q 1 P7→

H0 : Bern(γ)

H1 : Bern(1) (in-clique)

(1− γ)Q + γP

P (in-cluster)

How to choose P,Q? Matching H0:
(1− γ)Q + γP = Binom(`2,q)
Matching H1 approximately: P ≈ Binom(`2,p)
in total variation distance

Lemma (Bound the total variation distance)
Let `,n ∈ N, k ∈ [n] and γ ∈ (0, 1

2]. Let
N = `n, K = k`, p = 2q and
m0 = blog2(1/γ)c. Assume that 16q`2 ≤ 1
and k ≥ 6e`. If G ∼ G(n, γ), then
G̃ ∼ G(N,q). If G ∼ G(n, k ,1, γ), then

dTV
(
PG̃,G(N,K ,p,q)

)
. e−K + ke−` + k2(q`2)m0+1 +

√
eq`2 − 1

Please see paper for more information and
references

Thanks!


